• Title/Summary/Keyword: blocking effect

Search Result 904, Processing Time 0.024 seconds

HIV/AIDS Management: Dolutegravir Based Antiretroviral Drug Therapy

  • John, Ikpeama Osita;Emmanuel, Okoh Emeka;Anthonia, Ikpeama Chizoba;Joy, Ikpeama Chinwe;Adimabua, Okafor Patrick;Osazuwa, Igbineweka Osa;Andrew, Ikpeama Emeka;Mariam, Onuzulike Nonye;Gami, Hilary Tumba
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.4
    • /
    • pp.17-19
    • /
    • 2020
  • HIV/AIDS disease still remain a global pandemic and it's management has undergone series of treatment changes and improvement although there is still no permanent cure.Dolutegravir belongs to a group of HIV drugs called integrase inhibitors. Integrase inhibitors block an HIV enzyme called integrase. By blocking integrase, integrase inhibitors prevent HIV from multiplying and can reduce the amount of HIV in the body.Dolutegravir combination based regimen has turned out to be very effective (antiviral) with negligible rare side effects on clients. This drug (Dolutegravir based regimen) combination has successfully increased the appetite for food of all the clients, unlike others and has shown to reduce viral load in the most shortest period ever. It can be deduced that development of resistant mutant virus will be reduced if not eliminated with dolutogravir based regimen.The role of Continuous adherence counseling has shown to improve clients treatment management. It is important to note that the availability of food has direct effect on the economic status or financial weight on the client. Hence the progress that is increase in body mass index (BMI) is a direct impact of the availability of food for the clients.

Effects of Glibenclamide on $Na^+-K^+$ Pump and L-type $Ca^{2+}$ Channel in Guinea-pig Ventricular Myocytes

  • Lee, So-Young;Lee, Chin O.
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.81-81
    • /
    • 2003
  • Glibenclamide, a sulfonylurea derivative, has been used in tile treatment of type II diabetes mellitus. Recent studies provided evidence that glibenclamide, in addition to blocking ATP-sensitive $K^{+}$ channels, also affected Na$^{+}$-K$^{+}$ pumps and L-type $Ca^{2+}$ channels in noncardiac cells. The effect of glibenclamide on the cardiac muscle is not clearly known. In the present study, the effects of glibenclamide on intracellular Na$^{+}$ concentration ([Na$^{+}$]$_{i}$ ), twitch tension, $Ca^{2+}$ transient, and membrane potential were investigated in isolated guinea-pig ventricular myocytes. Glibenclamide at concentration of 200 $\mu$M increased [Na$^{+}$]$_{i}$ by 3.9$\pm$0.4 mM (mean $\pm$ SE, n=12), decreased twitch tension by 36.1 $\pm$ 4.0% (mean $\pm$ SE, n=8), reduced $Ca^{2+}$ transient by 24.4$\pm$5.1% (mean $\pm$ SE, n=3), slightly depolarized diastolic membrane potential, and did not change action potential duration. To determine whether inhibitions of Na$^{+}$-K$^{+}$ pumps and L-type $Ca^{2+}$ channels are responsible for the increase of [Na$^{+}$]$_{i}$ and the decrease of twitch tension, we tested effects of glibenclamide on Na$^{+}$-K$^{+}$ pump current and L-type $Ca^{2+}$ current. Glibenclamide decreased Na$^{+}$-K$^{+}$ pump current and L-type $Ca^{2+}$ current in a concentration-dependent manner.t in a concentration-dependent manner.

  • PDF

Quantitative Analysis of Safety Improvement on Smart Roads (스마트도로 안전성 향상 효과의 정량화 연구)

  • Chang, Hyun-Ho;Baek, Seung-Kirl;Oh, Sung-Ho;Kim, Ho-Jeung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.44-54
    • /
    • 2011
  • Intelligent transport services on smart roads tend to have a problem at the stage of benefit-cost analysis that can not secure economic feasibility of the new services which increase early investment cost on building its infrastructure. It is expected that the number of road accidents, 'Incident/Accident', will decline through various safety services using intelligent safety facilities, intelligent transport management and so on, and that traffic congestion will also decrease. The effect of traffic congestion reduction could be the benefit by safety improvement, however current investment-analysis process in Korea does not appropriate it as a benefit. This study estimated road blocking time with 'Incident/Accident' classification and highway accident data of past three years. It also developed a generalized model by a regression analysis with a microscopical simulation. Furthermore, it suggested necessary units on quantitative analysis in order to make the developed model applicable to investment evaluation. As a result of applying the developed model to Smart-Highway Project, it showed that total safety improvement benefit is about 139 billion dollars over 30 years when it is supposed that accident decreasing rate by smart safety facilities is 10%.

A Study on Interference Effect between DTV Service and IMT Service (DTV 서비스와 IMT 서비스간 간섭 영향 연구)

  • Shim, Yong-Sup;Lee, Il-Kyoo;Chang, Sang-Hyun;Cho, In-Kyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.61-68
    • /
    • 2010
  • Korea has made a plan to allocate CH 14~CH 51 (470 MHz~698 MHz) for DTV transition. Therefore, It is a necessary to take account compatibility between DTV service and other potential services. This paper assumes that DTV service operates on CH 51(692 MHz~698 MHz) and IMT service operates on CH 52(698 MHz~704 MHz), and then analyzes compatibility between DTV service and IMT service with Spectrum Engineering Advanced Monte Carlo Analysis Tool(SEAMCAT). The interference probability from IMT service to DTV service and capacity loss of IMT service due to interference from DTV service is studied, respectively. For the simulation, four interference cases in four different scenarios are considered. With considering the depolarization factor, a guard band of 8 MHz is required in the case of between IMT service downlink(DL) and DTV service, in the case of between IMT service uplink(UL) and DTV service, a guard band of 6 MHz is needed for the worst case of urban scenario on consideration of more then 15 dB increase of IMT system base station(BS) receiver blocking level.

Sensing Characteristics of Tyrosinase Immobilized and Tyrosinase, Laccase Co-immobilized Platinum Electrodes

  • Quan, De;Kim, You-Sung;Shin, Woon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1195-1201
    • /
    • 2004
  • Tyrosinase was covalently immobilized on platinum electrode according to the method we developed for laccase (Bull. Korean Chem. Soc. 2002, 23(7), 385) and p-chlorophenol, p-cresol, and phenol could be detected with sensitivities of 334, 139 and 122 nA/ ${\mu}M$ and the detection limits of 1.0, 2.0, and 2.5 ${\mu}M$, respectively. The response time ($t_{90\%}$) is 3 seconds for p-chlorophenol, and 5 seconds for p-cresol and phenol. The optimal pHs of the sensor are in the range of 5.0- 6.0. This sensor can tolerate at least 500 times repeated injections of p-chlorophenol with retaining 80% of initial activity. In case of tyrosinase and laccase co immobilized platinum electrode, the sensitivities are 560 nA/ ${\mu}M$ for p-phenylenediamine (PPD) and 195 nA/ ${\mu}M$ for p-chlorophenol, respectively. The sensitivity of the bi-enzyme sensor for PPD increases 70% compared to that of only laccase immobilized one, but the sensitivity for p-chlorophenol decreases 40% compared to that of only tyrosinase immobilized one. The sensitivity increase for the bi-enzyme sensor for PPD can be ascribed to the additional catalytic function of the co-immobilized tyrosinase. The sensitivity decrease for p-chlorophenol can be explained by the “blocking effect” of the co-immobilized laccase, which hinders the mass transport through the immobilized layer. If PPD was detected with the electrode that had been used for p-chlorophenol, the sensitivity decreased 20% compared to that of the electrode that had been used only for PPD. Similarly, if p-chlorophenol was detected with PPD detected electrode, the sensitivity also decreased 20%. The substrate-induced conformation changes of the enzymes in a confined layer may be responsible for the phenomena.

Effect of Composite Sandwich Endplates on the Improvement of Cold Start Characteristics for PEMFC (복합재료 샌드위치 엔드플레이트의 연료전지 냉시동성 향상에 미치는 효과)

  • Suh, Jung-Do;Ko, Jae-Jun;Ahn, Byung-Ki;Yu, Ha-Na;Lee, Dai-Gil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.859-867
    • /
    • 2011
  • The cold start problem is one of major obstacles to overcome for the commercialization of fuel cell vehicles. However, the cold start characteristics of fuel cell systems are very complicated since various phenomena, i.e. ice-blocking, electro-chemical reactions, heat transfer, and defrosting of BOP components, are involved in them. This paper presents a framework to approach the problem at a full stack scale using Axiomatic Design (AD). It was characterized in terms of Functional Requirements (FRs) and Design Parameters (DPs) while their relations were established in a design matrix. Considering the design matrix, the endplates should have low thermal conductivity and capacity without increase in weight or decrease in structural stiffness. Consequently, composite sandwich endplates were proposed and examined both through finite element analyses and experiments simulating cold start conditions. From the examinations, it was found that the composite sandwich endplates significantly contributed to improving the cold start characteristics of PEMFC.

Characterization of Hot Electron Transistors Using Graphene at Base (그래핀을 베이스로 사용한 열전자 트랜지스터의 특성)

  • Lee, Hyung Gyoo;Kim, Sung Jin;Kang, Il-Suk;Lee, Gi Sung;Kim, Ki Nam;Koh, Jin Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.147-151
    • /
    • 2016
  • Graphene has a monolayer crystal structure formed with C-atoms and has been used as a base layer of HETs (hot electron transistors). Graphene HETs have exhibited the operation at THz frequencies and higher current on/off ratio than that of Graphene FETs. In this article, we report on the preliminary results of current characteristics from the HETs which are fabricated utilizing highly doped Si collector, graphene base, and 5 nm thin $Al_2O_3$ tunnel layers between the base and Ti emitter. We have observed E-B forward currents are inherited to tunneling through $Al_2O_3$ layers, but have not noticed the Schottky barrier blocking effect on B-C forward current at the base/collector interface. At the common-emitter configuration, under a constant $V_{BE}$ between 0~1.2V, $I_C$ has increased linearly with $V_{CE}$ for $V_{CE}$ < $V_{BE}$ indicating the saturation region. As the $V_{CE}$ increases further, a plateau of $I_C$ vs. $V_{CE}$ has appeared slightly at $V_{CE}{\simeq}V_{BE}$, denoting forward-active region. With further increase of $V_{CE}$, $I_C$ has kept increasing probably due to tunneling through thin Schottky barrier between B/C. Thus the current on/off ration has exhibited to be 50. To improve hot electron effects, we propose the usage of low doped Si substrate, insertion of barrier layer between B/C, or substrates with low electron affinity.

The Influence of the Internal Donors in the Heterogenous Olefin Polymerization Catalyst on the Molecular Structure of Linear Low Density Polyethylene (불균일계 올레핀 중합촉매내 내부전자공여체가 선형 저밀도폴리에틸렌 분자구조에 미치는 영향)

  • Ko, Young Soo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.410-413
    • /
    • 2007
  • The effect of internal donor(ID) in the heterogeneous Ziegler-Natta catalyst on the ethylene-1-butene copolymerization and the molecular structure of the resulting copolymer was investigated. $SiO_2$-supported $TiCl_4$ catalysts having ID/Ti molar ratio of 0.5 were prepared with ethyaluminium dichloride, magnesium alkyl, 2-ethyl-1-hexanol and $TiCl_4$. Three different IDs were employed such as ethylbenzoate(EB), diisobuylphthalate(DIBP) and dioctylphthalate(DOP). ID-added catalyst showed a larger fraction of Ti(+3) compared to that of no ID-added catalyst. The EB-added catalyst showed the highest activity in copolymerization. Xylene soluble value decreased by more than 50 % with ID-added catalysts compared to that of no ID-added catalyst. Crystaf analysis showed the chemical compositional distribution of PE copolymer was improved in the case of DIBP-added catalyst significantly. It could be explained that the presence of ID could make more even active sites and block the non-stereospecific active sites.

Single-Protein Molecular Interactions on Polymer-Modified Glass Substrates for Nanoarray Chip Application Using Dual-Color TIRFM

  • Kim, Dae-Kwang;Lee, Hee-Gu;Jung, Hyung-Il;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.783-790
    • /
    • 2007
  • The immobilization of proteins and their molecular interactions on various polymer-modified glass substrates [i.e. 3-aminopropyltriethoxysilane (APTS), 3-glycidoxypropyltrimethoxysilane (GPTS), poly (ethylene glycol) diacrylate (PEG-DA), chitosan (CHI), glutaraldehyde (GA), 3-(trichlorosilyl)propyl methacrylate (TPM), 3'-mercaptopropyltrimethoxysilane (MPTMS), glycidyl methacrylate (GMA) and poly-l-lysine (PL).] for potential applications in a nanoarray protein chip at the single-molecule level was evaluated using prismtype dual-color total internal reflection fluorescence microscopy (dual-color TIRFM). A dual-color TIRF microscope, which contained two individual laser beams and a single high-sensitivity camera, was used for the rapid and simultaneous dual-color detection of the interactions and colocalization of different proteins labeled with different fluorescent dyes such as Alexa Fluor® 488, Qdot® 525 and Alexa Fluor® 633. Most of the polymer-modified glass substrates showed good stability and a relative high signal-to-noise (S/N) ratio over a 40-day period after making the substrates. The GPTS/CHI/GA-modified glass substrate showed a 13.5-56.3% higher relative S/N ratio than the other substrates. 1% Top-Block in 10 mM phosphate buffered saline (pH 7.4) showed a 99.2% increase in the blocking effect of non-specific adsorption. These results show that dual-color TIRFM is a powerful methodology for detecting proteins at the single-molecule level with potential applications in nanoarray chips or nano-biosensors.

Interaction of Antihistaminics with Muscarinic Receptor(I) -Action on the cardiac muscarinic receptor- (항(抗) Histamine제(劑)와 Muscarinic Receptor와의 상호작용(相互作用)(I) -심장(心臟) muscarinic receptor에 대한 작용(作用)-)

  • Lee, Shin-Woong;Park, Yeung-Joo;Lee, Jeung-Soo;Ha, Kwang-Won;Jin, Kap-Duck
    • YAKHAK HOEJI
    • /
    • v.32 no.2
    • /
    • pp.101-111
    • /
    • 1988
  • $[^3H]$ Quinuclidinyl benzilate(QNB) binding assays were performed in the dog ventricular sarcolemma fraction enriched approx. 32-fold in sarcolemma compared to the starting homogenate to elucidate the effect of antihistaminics on cardiac muscarinic receptor. Chlorpheniramine(CHP) inhibited specific binding of $[^3H]$QNB and delayed the equilibrium binding. The rate constants at $37^{\circ}C$ for formation and dissociation of the QNB receptor complex were $0.38{\times}10^9\;M^{-1}$ and $1.6{\times}10^{-2}\;min^{-1}$, respectively. The mean value for the dissociation constant from the pairs of the rate constants was 43. 2 pM and this value was similar to the value(44.8pM) determined from Scatchard analysis. CHP decreased association rate constant, indicating increase in $K_D$ value. Decrease in affinity without affecting the binding site concentration$(B_{max})$ for $[^3H]$QNB binding by CHP was also demonstrated by Scatchard analysis. $K_i$ values for $H_i$-blockers that inhibited specific $[^3H]$QNB binding were $0.02{\sim}4.8{\mu}M$. Cimetidine with $K_i$ value of $230{\mu}M$, however, was ineffective in displacing $[^3H]$QNB binding at concentration of $50{\mu}M$. The Hill coefficient for $H_1$-blockers were about one. The results indicate that $H_1$-antihistaminics inhibit $[^3H]$ QNB binding by interaction with myocardiac muscarinic cholinergic receptor and anticholinergic side effects of these drugs are mainly due to this receptor blocking mechanism.

  • PDF