• Title/Summary/Keyword: blockers

Search Result 303, Processing Time 0.026 seconds

Chiral Separation of $\beta$-Blockers after Derivatization with (-)-$\alpa$- Methoxy-$\alpa$-(trifuoromethyl)phenylacetyl Chloride by Gas Chromatography

  • Kim, Kyeong-Ho;Lee, Joo-Hyun;Ko, Mi-Young;Hong, Seon-Pyo;Youm, Jeong-Rok
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.402-406
    • /
    • 2001
  • Gas chromatographic method was investigated for the chiral separation of several $\beta$-blockeros(atenolol, betaxolol, bisoprolol, metoprolol and pindolol) using (-)-$\alpa$-methoxy-$\alpa$-(trifluoromethyl)phenylacetyl chloride as a chiral derivatizing agent for amino group. Prior to N-acylation, hydroxyl group was converted into O-silyl ethers by react with N-methyl-H-(taimethylsilyl)trifluoroacetamide. The reaction was selective and rapid and the diasteromeric derivatives were well separated by capillary gas chromatography. (R)-isomers were eluted faster than (S)-isomers when (-)-$\alpa$-methoxy-$\alpa$-(trifluoromethyl)phenylacetyl chloride was used as the chiral derivatizing agent. But in the opposite sequence when (+)-$\alpa$-methoxy-$\alpa$-(trifluoromethyl)phenylacetyl chloride was used. No racemization was found during the reaction.

  • PDF

A Study on the Antimicrobial Activity and in vitro Cytotoxicity of UVB Sunscreen Chemicals in Cosmetic Products (UVB 자외선 차단제의 항균력 및 피부자극에 관한 연구)

  • 최종완;허윤석;손근욱
    • Proceedings of the SCSK Conference
    • /
    • 1992.09a
    • /
    • pp.46-68
    • /
    • 1992
  • To investigate the effect on the antimicrobial activity against S.aureus ATCC 6538, E.coli KCTC 1039 and cell toxic level against transformed mouse fibroblast L929 in formula added with various concentrations of UVB blockers commonly used in cosmetic products, these experiments were carried out by preservative efficacy testing methods and in vitro cytotoxicity methods. The results obtained were as follow ; 1) Octyl Dimethyl PABA had a broad antibacterial spectrum against the Gram (+) and the Gram(-) bacteria at 5.84 % concentration, but not Octyl Methoxycinnamate. 2) Antibacterial activity was decreased in a combined UVB blocker system of squalane base. Especially, Octyl Dimethyl PABA was inactivated by Octyl Methoxycinnamate at 5.84% concentration to a large extents , but not 4-Methylbenzylidene Camphor. 3) Within in vitro cytotoxicity by use of mouse fibroblast L929 on UV-B blockers, NR assay was more excellent than MTT assay on quantitative

  • PDF

Effect of particle size of TiO2 and octyl-methoxycinnamate (OMC) content on sun protection factor (SPF)

  • Choi, Jaeyeong;Kim, Suyeon;Kim, Woonjung;Eum, Chul Hun;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.159-166
    • /
    • 2017
  • Exposure to UV light, i.e., UV-A (320-400 nm) or UV-B (290-320 nm) radiation, can cause skin cancer. Titanium dioxide ($TiO_2$) effectively disperses UV light. Therefore, it is used as a physical UV filter in many UV light blockers. Usually, the $TiO_2$ content in commercialized UV blockers is 25 % at most. To block UV-B, a chemical UV blocker, octyl-methoxy cinnamate (OMC) is used. OMC is commonly used in combination with $TiO_2$. In this study, $TiO_2$ and OMC were mixed in different proportions to produce UV blockers with different compositions. Also the changes in the sun protection factor (SPF) based on the composition and $TiO_2$ particle sizes were investigated. In order to analyze the $TiO_2$ particle size, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) were used. The results showed that the SPF was influenced by the proportion of $TiO_2$ and OMC, where the proportion of $TiO_2$ induced a more significant influence. In addition, changes in the $TiO_2$ particle size based on the proportion of OMC were observed.

The Change of Taurine Transport in Osteocytes by Oxidative Stress, Hypertonicity and Calcium Channel Blockers

  • Kang, Young-Sook;Kim, Soon-Joo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • Taurine is the most abundant amino acid in many tissues and is found to be enhancing the bone tissue formation or inhibits the bone loss. Although it is reported that taurine reduces the alveolar bone loss through inhibiting the bone resorption, its functions of taurine and expression of taurine transporter (TauT) in bone have not been identified yet. The purpose of this study is to clarify the uptake mechanism of taurine in osteoblast using mouse osteoblast cell lines. In this study, mouse stromal ST2 cells and mouse osteoblast-like MC3T3-E1 cells as osteoblast cell lines were used. The activity of taurine uptake was assessed by measuring the uptake of [$^3H$]taurine in the presence or absence of inhibitors. TauT mRNA was detected in ST2 and MC3T3-E1 cells. [$^3H$]Taurine uptake by these cells was dependent on the presence of extracellular calcium ion. The [$^3H$]taurine uptake in ST2 cells treated with 4 mM calcium was increased by 1.7-fold of the control which was a significant change. In contrast, in $Ca^{++}$-free condition and L-type calcium channel blockers (CCBs), taurine transport to osteocyte was significantly inhibited. In oxidative stress conditions, [$^3H$]taurine uptake was decreased by TNF-$\alpha$ and $H_2O_2$. Under the hyperosmotic conditions, taurine uptake was increased, but inhibited by CCBs in hyperosmotic condition. These results suggest that, in mouse osteoblast cell lines, taurine uptake by TauT was increased by the presence of extracellular calcium, whereas decreased by CCBs and oxidative stresses, such as TNF-$\alpha$ and $H_2O_2$.

Role of $Ca^{2+}$ and Calmodulin on the Initiation of Sperm Motility in Salmonid Fishes

  • Kho, Kang-Hee;Morisawa, Masaaki;Choi, Kap-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.456-465
    • /
    • 2004
  • $K^+$ efflux through a certain type of $K^+$ channels causes the change of membrane potential and leads to cAMP synthesis in the transmembrane cell signaling for the initiation of sperm motility in the salmonid fishes. The addition of $Ca^{2+}$ conferred motility to the trout sperm that were immobilized by external $K^+$ and other alkaline metals, $Rb^+$ and $Cs^{2+}$, suggesting the participation of external $Ca^{2+}$ in the initiation of sperm motility. L-type $Ca^{2+}$ channel blockers such as nifedipine, nimodipine, and FS-2 inhibited the motility, but N-type $Ca^{2+}$ channel blocker, w-conotoxin MvIIA, did not. On the other hand, the membrane hyperpolarization and cAMP synthesis were suppressed by $Ca^{2+}$ channel blockers, nifedipine, and trifluoroperazine. Furthermore, these suppressions were relieved by the addition of $K^+$ ionophore, valinomycin. Inhibitors of calmodulin, such as W-7, trifluoperazine, and calrnidazol-C1, inhibited the sperm motility, membrane hyperpolarization, and cAMP synthesis. The results suggest that $Ca^{2+}$ influx through $Ca^{2+}$ channels that are sensitive to specific $Ca^{2+}$ channel blockers and calmodulin participate in the changes of membrane potential, leading to synthesis of cAMP in the cell signaling for the initiation of trout sperm motility.

Dust particles-induced intracellular Ca2+ signaling and reactive oxygen species in lung fibroblast cell line MRC5

  • Lee, Dong Un;Ji, Min Jeong;Kang, Jung Yun;Kyung, Sun Young;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • Epidemiologic interest in particulate matter (PM) is growing particularly because of its impact of respiratory health. It has been elucidated that PM evoked inflammatory signal in pulmonary epithelia. However, it has not been established $Ca^{2+}$ signaling mechanisms involved in acute PM-derived signaling in pulmonary fibroblasts. In the present study, we explored dust particles PM modulated intracellular $Ca^{2+}$ signaling and sought to provide a therapeutic strategy by antagonizing PM-induced intracellular $Ca^{2+}$ signaling in human lung fibroblasts MRC5 cells. We demonstrated that PM10, less than $10{\mu}m$, induced intracellular $Ca^{2+}$ signaling, which was mediated by extracellular $Ca^{2+}$. The PM10-mediated intracellular $Ca^{2+}$ signaling was attenuated by antioxidants, phospholipase blockers, polyADPR polymerase 1 inhibitor, and transient receptor potential melastatin 2 (TRPM2) inhibitors. In addition, PM-mediated increases in reactive oxygen species were attenuated by TRPM2 blockers, clotrimazole (CLZ) and N-(p-amylcinnamoyl) anthranilic acid (ACA). Our results showed that PM10 enhanced reactive oxygen species signal by measuring DCF fluorescence and the DCF signal attenuated by both TRPM2 blockers CLZ and ACA. Here, we suggest functional inhibition of TRPM2 channels as a potential therapeutic strategy for modulation of dust particle-mediated signaling and oxidative stress accompanying lung diseases.

Does Beta-blocker Therapy Improve the Survival of Patients with Metastatic Non-small Cell Lung Cancer?

  • Aydiner, Adnan;Ciftci, Rumeysa;Karabulut, Senem;Kilic, Leyla
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6109-6114
    • /
    • 2013
  • Aim: To determine whether beta-blockers (BBs) improve the overall survival (OS) of patients with metastatic non-small cell lung cancer (NSCLC). Materials and Methods: The medical charts of 107 patients with metastatic NSCLC were retrospectively assessed. Thirty-five patients (BB group) using BBs during chemotherapy (CT) were compared with 72 controls [control=(C) group] who did not use BBs following the diagnosis of NSCLC. The histological tumor subtype, performance status (ECOG), age, gender, smoking status, comorbidities, other medications and chemotherapeutics that were received in any line of treatment were recorded. We compared the overall survival (OS) of the patients in the BB and C groups. Results: The mean age of the patients was 61 years (range 42-81 years) and all patients were administered CT. The BB group was more likely to have HT and IHD and was more likely to use RAS blockers (p<0.01 for all) compared with the C group, as expected. The mean follow-up time was 17.8 months (range 1-102 months) for the entire group. The most commonly prescribed BB agent was metoprolol (80% of cases). At the time of the analysis, 74 (69%) of all patients had died. In the univariate analysis the median overall survival (OS) was 19.25 (${\pm}2.87$) months (95%CI: 13.62-24.88) in the BB group and 13.20 (${\pm}2.37$) months (95%CI: 8.55-17.85) in the C group (p=0.017). However, the benefit of BBs on survival disappeared in the multivariate analysis. Conclusions: The use of BBs during CT may be associated with an improved OS for patients with metastatic NSCLC.

Comparison of electrophysiological effects of calcium channel blockers on cardiac repolarization

  • Lee, Hyang-Ae;Hyun, Sung-Ae;Park, Sung-Gurl;Kim, Ki-Suk;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.119-127
    • /
    • 2016
  • Dihydropyridine (DHP) calcium channel blockers (CCBs) have been widely used to treat of several cardiovascular diseases. An excessive shortening of action potential duration (APD) due to the reduction of $Ca^{2+}$ channel current ($I_{Ca}$) might increase the risk of arrhythmia. In this study we investigated the electrophysiological effects of nicardipine (NIC), isradipine (ISR), and amlodipine (AML) on the cardiac APD in rabbit Purkinje fibers, voltage-gated $K^+$ channel currents ($I_{Kr}$, $I_{Ks}$) and voltage-gated $Na^+$ channel current ($I_{Na}$). The concentration-dependent inhibition of $Ca^{2+}$ channel currents ($I_{Ca}$) was examined in rat cardiomyocytes; these CCBs have similar potency on $I_{Ca}$ channel blocking with $IC_{50}$ (the half-maximum inhibiting concentration) values of 0.142, 0.229, and 0.227 nM on NIC, ISR, and AML, respectively. However, ISR shortened both $APD_{50}$ and $APD_{90}$ already at $1{\mu}M$ whereas NIC and AML shortened $APD_{50}$ but not $APD_{90}$ up to $30{\mu}M$. According to ion channel studies, NIC and AML concentration-dependently inhibited $I_{Kr}$ and $I_{Ks}$ while ISR had only partial inhibitory effects (<50% at $30{\mu}M$). Inhibition of $I_{Na}$ was similarly observed in the three CCBs. Since the $I_{Kr}$ and $I_{Ks}$ mainly contribute to cardiac repolarization, their inhibition by NIC and AML could compensate for the AP shortening effects due to the block of $I_{Ca}$.