• 제목/요약/키워드: block learning

검색결과 322건 처리시간 0.027초

초등 AI 교육 플랫폼에 대한 전문가 인식조사 연구 (A Study on Experts' Perception Survey on Elementary AI Education Platform)

  • 이재호;이승훈
    • 정보교육학회논문지
    • /
    • 제24권5호
    • /
    • pp.483-494
    • /
    • 2020
  • 4차 산업혁명이 도래함으로써 AI 교육에 대한 관심이 증가하고 있다. 미래를 이끌어갈 AI 역량을 갖춘 인재를 양성하기 위해서는 학교 현장에서 AI 교육이 내실 있게 이루어져야 한다. 국내·외에서 AI 교육을 시행하고 있지만, 더 나은 AI 교육을 시행하기 위해서는 AI 교육 플랫폼의 역할이 중요하다고 판단하였기에, 본 연구에서는 AI 교육 플랫폼에 대한 전문가 인식을 조사하였다. 교수·학습관리, 교육용 콘텐츠, 접근성, AI 교육 플랫폼의 성능, 초등학생의 수준 적합도 등의 5가지 기준을 바탕으로 인식조사를 시행하였다. 총 103명의 교육 관련 전문가들을 대상으로 실시하였으며, 조사 결과 Machine Learning for Kids, Teachable Machine, AI Oceans(code.org), 엔트리, 지니 블록, 앱인밴터, Elice, mBlock 등의 8가지 플랫폼 중 엔트리가 초등 AI 교육에 가장 적합한 플랫폼으로 선정되었다. 이는 엔트리가 양질의 교육용 콘텐츠를 제공하고, 접근성이 편리하며, 교수·학습 관리가 가능하고, 초등학생들의 수준에 적합한 AI 교육 플랫폼이기 때문인 것으로 분석된다. 다양한 AI 교육 플랫폼을 학교 현장에 적용하기 위해서 교사를 대상으로 AI 관련 연수를 실시하여 AI 교육 전문가로 양성해야 하며, 지속적으로 AI 교육 플랫폼을 접할 기회를 제공해야 할 것이다. 본 연구는 조사대상 인원이 제한적이었고, 대부분의 인식조사 참여자가 경기도에서 근무하는 전문가라서 모집단 인식조사라고 하기 에는 제한점이 존재한다. 향후 이와 같은 제한점을 보완하기 위한 전국단위의 전문가를 대상한 연구가 진행되어야 할 것으로 판단된다.

Vehicle Image Recognition Using Deep Convolution Neural Network and Compressed Dictionary Learning

  • Zhou, Yanyan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.411-425
    • /
    • 2021
  • In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.

실시간 기반 매우 작은 객체 탐지를 위한 딥러닝 알고리즘 개발 (Development of a Deep Learning Algorithm for Small Object Detection in Real-Time )

  • 여우성;박미영
    • 한국산업융합학회 논문집
    • /
    • 제27권4_2호
    • /
    • pp.1001-1007
    • /
    • 2024
  • Recent deep learning algorithms for object detection in real-time play a crucial role in various applications such as autonomous driving, traffic monitoring, health care, and water quality monitoring. The size of small objects, in particular, significantly impacts the accuracy of detection models. However, data containing small objects can lead to underfitting issues in models. Therefore, this study developed a deep learning model capable of quickly detecting small objects to provide more accurate predictions. The RE-SOD (Residual block based Small Object Detector) developed in this research enhances the detection performance for small objects by using RGB separation preprocessing and residual blocks. The model achieved an accuracy of 1.0 in image classification and an mAP50-95 score of 0.944 in object detection. The performance of this model was validated by comparing it with real-time detection models such as YOLOv5, YOLOv7, and YOLOv8.

LEARNING PERFORMANCE AND DESIGN OF AN ADAPTIVE CONTROL FUCTION GENERATOR: CMAC(Cerebellar Model Arithmetic Controller)

  • 최동엽;황현
    • 한국기계연구소 소보
    • /
    • 통권19호
    • /
    • pp.125-139
    • /
    • 1989
  • As an adaptive control function generator, the CMAC (Cerebellar Model Arithmetic or Articulated Controller) based learning control has drawn a great attention to realize a rather robust real-time manipulator control under the various uncertainties. There remain, however, inherent problems to be solved in the CMAC application to robot motion control or perception of sensory information. To apply the CMAC to the various unmodeled or modeled systems more efficiently, it is necessary to analyze the effects of the CMAC control parameters on the trained net. Although the CMAC control parameters such as size of the quantizing block, learning gain, input offset, and ranges of input variables play a key role in the learning performance and system memory requirement, these have not been fully investigated yet. These parameters should be determined, of course, considering the shape of the desired function to be trained and learning algorithms applied. In this paper, the interrelation of these parameters with learning performance is investigated under the basic learning schemes presented by authors. Since an analytic approach only seems to be very difficult and even impossible for this purpose, various simulations have been performed with pre specified functions and their results were analyzed. A general step following design guide was set up according to the various simulation results.

  • PDF

Design of Block Codes for Distributed Learning in VR/AR Transmission

  • Seo-Hee Hwang;Si-Yeon Pak;Jin-Ho Chung;Daehwan Kim;Yongwan Kim
    • Journal of information and communication convergence engineering
    • /
    • 제21권4호
    • /
    • pp.300-305
    • /
    • 2023
  • Audience reactions in response to remote virtual performances must be compressed before being transmitted to the server. The server, which aggregates these data for group insights, requires a distribution code for the transfer. Recently, distributed learning algorithms such as federated learning have gained attention as alternatives that satisfy both the information security and efficiency requirements. In distributed learning, no individual user has access to complete information, and the objective is to achieve a learning effect similar to that achieved with the entire information. It is therefore important to distribute interdependent information among users and subsequently aggregate this information following training. In this paper, we present a new extension technique for minimal code that allows a new minimal code with a different length and Hamming weight to be generated through the product of any vector and a given minimal code. Thus, the proposed technique can generate minimal codes with previously unknown parameters. We also present a scenario wherein these combined methods can be applied.

Denoising ISTA-Net: 측면주사 소나 영상 잡음제거를 위한 강화된 비선형성 학습 기반 압축 센싱 (Denoising ISTA-Net: learning based compressive sensing with reinforced non-linearity for side scan sonar image denoising)

  • 이보경;구본화;김완진;김성일;고한석
    • 한국음향학회지
    • /
    • 제39권4호
    • /
    • pp.246-254
    • /
    • 2020
  • 본 논문에서는 학습 기반 압축 센싱 기법을 이용한 측면주사 소나 영상의 비균일 잡음 제거 알고리즘을 제안한다. 제안하는 기법은 Iterative Shrinkage and Thresholding Algorithm(ISTA) 알고리즘을 기반으로 하고 있으며 성능 향상을 위해 학습네트워크의 비선형성을 강화시키는 전략을 선택하였다. 제안된 구조는 입력 신호를 비선형 변환과 초기화 하는 부분, Sparse 공간으로 변환 및 역변환하는 ISTA block, 특징 공간에서 픽셀 공간으로 변환하는 부분으로 구성된다. 제안된 기법은 다양한 모의 실험을 통해 잡음 제거 성능 및 메모리 효율성 측면에서 우수함이 입증되었다.

숫자 데이터를 활용한 블록 기반의 머신러닝 교육이 초등학생 컴퓨팅 사고력에 미치는 효과 (Effect of block-based Machine Learning Education Using Numerical Data on Computational Thinking of Elementary School Students)

  • 문우종;이준호;김봉철;서영호;김정아;오정철;김용민;김종훈
    • 정보교육학회논문지
    • /
    • 제25권2호
    • /
    • pp.367-375
    • /
    • 2021
  • 본 연구는 초등학생의 컴퓨팅 사고력 신장을 위한 교육 방법으로 인공지능 교육 프로그램을 개발하여 적용한 후 그 효과를 검증하였다. 교육 프로그램은 ADDIE(Analysis-Design-Development-Implementation-Evaluation) 모형에 따라 사전에 초등학교 교사 100명을 대상으로 구글 설문을 이용하여 실시한 요구 분석 결과를 바탕으로 그 목표와 방향을 설계하였다. 머신러닝 포 키즈 중 블록 기반의 프로그래밍을 위해 스크래치를 사용하였고 숫자 데이터를 활용하여 인공지능의 원리를 학습하고 직접 문제를 해결하는 프로그래밍 과정에서 컴퓨팅 사고력을 향상할 수 있도록 교재를 개발하고 적용하였다. 비버챌린지를 활용하여 사전·사후 검사 결과를 통해 컴퓨팅 사고력의 변화 정도를 분석하였으며, 분석 결과 본 연구는 초등학생의 컴퓨팅 사고력 향상에 긍정적인 영향을 미친 것으로 나타났다.

EPL을 활용한 초등 정보 영재 판별 도구의 개발 (Developing an Discrimination Test for the Information Gifted usign EPL at the Elementary School Level)

  • 김현수;김수환;한선관
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2011년도 동계학술대회
    • /
    • pp.203-209
    • /
    • 2011
  • 본 연구는 선행 연구 분석을 통해 찾아낸 정보 영재의 특성 중 하나인 알고리즘 능력을 측정하여 정보 영재를 판별할 수 있는 도구를 교육용 프로그래밍 언어인 스크래치를 활용하여 개발하였다. 판별 도구는 크게 단일 스프라이트, 다중 스프라이트로 나누고 각각 블록추가, 블록 순서 변경, 변수 값 수정, 블록 종류 변경으로 세분화하여 문항을 개발하였다. 본 연구에서 개발한 정보 영재 판별 도구는 프로그래밍 언어를 배우지 않은 학생들도 쉽게 조작할 수 있는 교육용 프로그래밍 언어 중 하나인 스크래치를 활용해 제작되었다, 그러므로 프로그래밍을 배우지 않은 일반 학생들을 대상으로 판별 도구를 이용해 알고리즘 능력을 측정하고 분석한다면 많은 학생들의 정보 영재성을 판별하는데 기여할 것으로 기대한다.

  • PDF

An Optimized CLBP Descriptor Based on a Scalable Block Size for Texture Classification

  • Li, Jianjun;Fan, Susu;Wang, Zhihui;Li, Haojie;Chang, Chin-Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.288-301
    • /
    • 2017
  • In this paper, we propose an optimized algorithm for texture classification by computing a completed modeling of the local binary pattern (CLBP) instead of the traditional LBP of a scalable block size in an image. First, we show that the CLBP descriptor is a better representative than LBP by extracting more information from an image. Second, the CLBP features of scalable block size of an image has an adaptive capability in representing both gross and detailed features of an image and thus it is suitable for image texture classification. This paper successfully implements a machine learning scheme by applying the CLBP features of a scalable size to the Support Vector Machine (SVM) classifier. The proposed scheme has been evaluated on Outex and CUReT databases, and the evaluation result shows that the proposed approach achieves an improved recognition rate compared to the previous research results.

Path Planning for a Robot Manipulator based on Probabilistic Roadmap and Reinforcement Learning

  • Park, Jung-Jun;Kim, Ji-Hun;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권6호
    • /
    • pp.674-680
    • /
    • 2007
  • The probabilistic roadmap (PRM) method, which is a popular path planning scheme, for a manipulator, can find a collision-free path by connecting the start and goal poses through a roadmap constructed by drawing random nodes in the free configuration space. PRM exhibits robust performance for static environments, but its performance is poor for dynamic environments. On the other hand, reinforcement learning, a behavior-based control technique, can deal with uncertainties in the environment. The reinforcement learning agent can establish a policy that maximizes the sum of rewards by selecting the optimal actions in any state through iterative interactions with the environment. In this paper, we propose efficient real-time path planning by combining PRM and reinforcement learning to deal with uncertain dynamic environments and similar environments. A series of experiments demonstrate that the proposed hybrid path planner can generate a collision-free path even for dynamic environments in which objects block the pre-planned global path. It is also shown that the hybrid path planner can adapt to the similar, previously learned environments without significant additional learning.