4차 산업혁명이 도래함으로써 AI 교육에 대한 관심이 증가하고 있다. 미래를 이끌어갈 AI 역량을 갖춘 인재를 양성하기 위해서는 학교 현장에서 AI 교육이 내실 있게 이루어져야 한다. 국내·외에서 AI 교육을 시행하고 있지만, 더 나은 AI 교육을 시행하기 위해서는 AI 교육 플랫폼의 역할이 중요하다고 판단하였기에, 본 연구에서는 AI 교육 플랫폼에 대한 전문가 인식을 조사하였다. 교수·학습관리, 교육용 콘텐츠, 접근성, AI 교육 플랫폼의 성능, 초등학생의 수준 적합도 등의 5가지 기준을 바탕으로 인식조사를 시행하였다. 총 103명의 교육 관련 전문가들을 대상으로 실시하였으며, 조사 결과 Machine Learning for Kids, Teachable Machine, AI Oceans(code.org), 엔트리, 지니 블록, 앱인밴터, Elice, mBlock 등의 8가지 플랫폼 중 엔트리가 초등 AI 교육에 가장 적합한 플랫폼으로 선정되었다. 이는 엔트리가 양질의 교육용 콘텐츠를 제공하고, 접근성이 편리하며, 교수·학습 관리가 가능하고, 초등학생들의 수준에 적합한 AI 교육 플랫폼이기 때문인 것으로 분석된다. 다양한 AI 교육 플랫폼을 학교 현장에 적용하기 위해서 교사를 대상으로 AI 관련 연수를 실시하여 AI 교육 전문가로 양성해야 하며, 지속적으로 AI 교육 플랫폼을 접할 기회를 제공해야 할 것이다. 본 연구는 조사대상 인원이 제한적이었고, 대부분의 인식조사 참여자가 경기도에서 근무하는 전문가라서 모집단 인식조사라고 하기 에는 제한점이 존재한다. 향후 이와 같은 제한점을 보완하기 위한 전국단위의 전문가를 대상한 연구가 진행되어야 할 것으로 판단된다.
In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.
Recent deep learning algorithms for object detection in real-time play a crucial role in various applications such as autonomous driving, traffic monitoring, health care, and water quality monitoring. The size of small objects, in particular, significantly impacts the accuracy of detection models. However, data containing small objects can lead to underfitting issues in models. Therefore, this study developed a deep learning model capable of quickly detecting small objects to provide more accurate predictions. The RE-SOD (Residual block based Small Object Detector) developed in this research enhances the detection performance for small objects by using RGB separation preprocessing and residual blocks. The model achieved an accuracy of 1.0 in image classification and an mAP50-95 score of 0.944 in object detection. The performance of this model was validated by comparing it with real-time detection models such as YOLOv5, YOLOv7, and YOLOv8.
As an adaptive control function generator, the CMAC (Cerebellar Model Arithmetic or Articulated Controller) based learning control has drawn a great attention to realize a rather robust real-time manipulator control under the various uncertainties. There remain, however, inherent problems to be solved in the CMAC application to robot motion control or perception of sensory information. To apply the CMAC to the various unmodeled or modeled systems more efficiently, it is necessary to analyze the effects of the CMAC control parameters on the trained net. Although the CMAC control parameters such as size of the quantizing block, learning gain, input offset, and ranges of input variables play a key role in the learning performance and system memory requirement, these have not been fully investigated yet. These parameters should be determined, of course, considering the shape of the desired function to be trained and learning algorithms applied. In this paper, the interrelation of these parameters with learning performance is investigated under the basic learning schemes presented by authors. Since an analytic approach only seems to be very difficult and even impossible for this purpose, various simulations have been performed with pre specified functions and their results were analyzed. A general step following design guide was set up according to the various simulation results.
Seo-Hee Hwang;Si-Yeon Pak;Jin-Ho Chung;Daehwan Kim;Yongwan Kim
Journal of information and communication convergence engineering
/
제21권4호
/
pp.300-305
/
2023
Audience reactions in response to remote virtual performances must be compressed before being transmitted to the server. The server, which aggregates these data for group insights, requires a distribution code for the transfer. Recently, distributed learning algorithms such as federated learning have gained attention as alternatives that satisfy both the information security and efficiency requirements. In distributed learning, no individual user has access to complete information, and the objective is to achieve a learning effect similar to that achieved with the entire information. It is therefore important to distribute interdependent information among users and subsequently aggregate this information following training. In this paper, we present a new extension technique for minimal code that allows a new minimal code with a different length and Hamming weight to be generated through the product of any vector and a given minimal code. Thus, the proposed technique can generate minimal codes with previously unknown parameters. We also present a scenario wherein these combined methods can be applied.
본 논문에서는 학습 기반 압축 센싱 기법을 이용한 측면주사 소나 영상의 비균일 잡음 제거 알고리즘을 제안한다. 제안하는 기법은 Iterative Shrinkage and Thresholding Algorithm(ISTA) 알고리즘을 기반으로 하고 있으며 성능 향상을 위해 학습네트워크의 비선형성을 강화시키는 전략을 선택하였다. 제안된 구조는 입력 신호를 비선형 변환과 초기화 하는 부분, Sparse 공간으로 변환 및 역변환하는 ISTA block, 특징 공간에서 픽셀 공간으로 변환하는 부분으로 구성된다. 제안된 기법은 다양한 모의 실험을 통해 잡음 제거 성능 및 메모리 효율성 측면에서 우수함이 입증되었다.
본 연구는 초등학생의 컴퓨팅 사고력 신장을 위한 교육 방법으로 인공지능 교육 프로그램을 개발하여 적용한 후 그 효과를 검증하였다. 교육 프로그램은 ADDIE(Analysis-Design-Development-Implementation-Evaluation) 모형에 따라 사전에 초등학교 교사 100명을 대상으로 구글 설문을 이용하여 실시한 요구 분석 결과를 바탕으로 그 목표와 방향을 설계하였다. 머신러닝 포 키즈 중 블록 기반의 프로그래밍을 위해 스크래치를 사용하였고 숫자 데이터를 활용하여 인공지능의 원리를 학습하고 직접 문제를 해결하는 프로그래밍 과정에서 컴퓨팅 사고력을 향상할 수 있도록 교재를 개발하고 적용하였다. 비버챌린지를 활용하여 사전·사후 검사 결과를 통해 컴퓨팅 사고력의 변화 정도를 분석하였으며, 분석 결과 본 연구는 초등학생의 컴퓨팅 사고력 향상에 긍정적인 영향을 미친 것으로 나타났다.
본 연구는 선행 연구 분석을 통해 찾아낸 정보 영재의 특성 중 하나인 알고리즘 능력을 측정하여 정보 영재를 판별할 수 있는 도구를 교육용 프로그래밍 언어인 스크래치를 활용하여 개발하였다. 판별 도구는 크게 단일 스프라이트, 다중 스프라이트로 나누고 각각 블록추가, 블록 순서 변경, 변수 값 수정, 블록 종류 변경으로 세분화하여 문항을 개발하였다. 본 연구에서 개발한 정보 영재 판별 도구는 프로그래밍 언어를 배우지 않은 학생들도 쉽게 조작할 수 있는 교육용 프로그래밍 언어 중 하나인 스크래치를 활용해 제작되었다, 그러므로 프로그래밍을 배우지 않은 일반 학생들을 대상으로 판별 도구를 이용해 알고리즘 능력을 측정하고 분석한다면 많은 학생들의 정보 영재성을 판별하는데 기여할 것으로 기대한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권1호
/
pp.288-301
/
2017
In this paper, we propose an optimized algorithm for texture classification by computing a completed modeling of the local binary pattern (CLBP) instead of the traditional LBP of a scalable block size in an image. First, we show that the CLBP descriptor is a better representative than LBP by extracting more information from an image. Second, the CLBP features of scalable block size of an image has an adaptive capability in representing both gross and detailed features of an image and thus it is suitable for image texture classification. This paper successfully implements a machine learning scheme by applying the CLBP features of a scalable size to the Support Vector Machine (SVM) classifier. The proposed scheme has been evaluated on Outex and CUReT databases, and the evaluation result shows that the proposed approach achieves an improved recognition rate compared to the previous research results.
International Journal of Control, Automation, and Systems
/
제5권6호
/
pp.674-680
/
2007
The probabilistic roadmap (PRM) method, which is a popular path planning scheme, for a manipulator, can find a collision-free path by connecting the start and goal poses through a roadmap constructed by drawing random nodes in the free configuration space. PRM exhibits robust performance for static environments, but its performance is poor for dynamic environments. On the other hand, reinforcement learning, a behavior-based control technique, can deal with uncertainties in the environment. The reinforcement learning agent can establish a policy that maximizes the sum of rewards by selecting the optimal actions in any state through iterative interactions with the environment. In this paper, we propose efficient real-time path planning by combining PRM and reinforcement learning to deal with uncertain dynamic environments and similar environments. A series of experiments demonstrate that the proposed hybrid path planner can generate a collision-free path even for dynamic environments in which objects block the pre-planned global path. It is also shown that the hybrid path planner can adapt to the similar, previously learned environments without significant additional learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.