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Path Planning for a Robot Manipulator based on
Probabilistic Roadmap and Reinforcement Learning

Jung-Jun Park, Ji-Hun Kim, and Jae-Bok Song*

Abstract: The probabilistic roadmap (PRM) method, which is a popular path planning scheme,
for a manipulator, can find a collision-free path by connecting the start and goal poses through a
roadmap constructed by drawing random nodes in the free configuration space. PRM exhibits
robust performance for static environments, but its performance is poor for dynamic
environments. On the other hand, reinforcement learning, a behavior-based control technique,
can deal with uncertainties in the environment. The reinforcement learning agent can establish a
policy that maximizes the sum of rewards by selecting the optimal actions in any state through
iterative interactions with the environment. In this paper, we propose efficient real-time path
planning by combining PRM and reinforcement learning to deal with uncertain dynamic
environments and similar environments. A series of experiments demonstrate that the proposed
hybrid path planner can generate a collision-free path even for dynamic environments in which
objects block the pre-planned global path. It is also shown that the hybrid path planner can adapt

to the similar, previously learned environments without significant additional learning.
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1. INTRODUCTION

A service robot is a human-oriented robot that can
provide various services such as education, support
for labor and housework, entertainment, and so on by
interacting with humans. Among all the parts of a
service robot, its arm, which can be manipulated to
provide various services to humans, is the most likely
to collide with static as well as dynamic obstacles
including humans.

Path planning for a robot manipulator requires the
generation of an optimized global path that can avoid
collisions with static or dynamic obstacles in a given
workspace [1]. Path planning is conducted either in a
real workspace or in a configuration space (C-space)
comprising a manipulator and obstacles. The former
case advantageous since path planning is performed
easily and directly without other specified mapping
processes. However, singularity problems may occur
because multiple solutions can exist for a given
configuration of the manipulator. To cope with these
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drawbacks, a collision avoidance solution that used
the back propagation neural network was proposed in
[2], but it still had the uncertainty depending on the
training set.

On the other hand, in the latter case, environment
information on the collision and collision-free regions
can be obtained since the joint angles at which the
manipulator collides with obstacles can be determined.
Obstacles having a uniform shape in the workspace
are usually deformed to an unpredictable shape by the
C-space mapping process. Therefore, it is very
difficult for the path planner to deal with dynamic
environments without accurate information on the
pose and configuration of dynamic obstacles.

Several schemes such as a roadmap approach, cell
decomposition method, potential field method have
been proposed to generate an optimal global path in a
given C-space [3,4]. Among these, the PRM
(probabilistic roadmap) method based on the roadmap
approach can be applied to complex static
environments as well as to a manipulator with high
degrees of freedom [5]. Furthermore, it can be easily
implemented because of its simple structure. However,
it requires accurate information on the environment,
which is difficult to obtain in practical situations,
especially in dynamic environments.

Since most environments involve uncertainties due
to various causes, practical path planning should deal
with such uncertainties. Reinforcement learning (RL)
has been used to handle uncertain situations in various
applications. Therefore, in this paper, we propose an
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efficient real-time hybrid path planning scheme that
combines PRM and reinforcement learning to deal
with uncertain dynamic environments. The real-time
operation of the path planner is another important
issue. When the information on obstacles is given in a
workspace, the slice projection method is used to
convert the workspace into the C-space, which
requires a large computation time. Therefore, in this
research, the use of a modified slice projection
algorithm is proposed to reduce this computational
burden. A series of experiments demonstrate that the
proposed hybrid path planner can generate a collision-
free path even for a dynamic environment in which
objects block the pre-planned global path. It is also
shown that the hybrid path planner can adapt to the
similar, previously learned environments without
significant additional learning.

This paper is organized as follows. Section 2
provides an overview of the configuration space, PRM
and reinforcement learning. Section 3 proposes a
hybrid path planner based on the PRM and RL. The
experimental results for both static and dynamic
environments are discussed in this section. Section 4
discusses the adaptability to similar environments and
a balance between exploration and exploitation.
Finally, Section 5 presents the conclusions.

>

2. PRM AND REINFORCEMENT LEARNING

The configuration of an arbitrary object is a
specification of its pose (i.e., position and orientation)
with respect to a fixed reference frame. The
configuration space (C-space) is the space that
comprises all possible configurations of the objects
[3]. It is usually described in the Cartesian coordinate
system whose axes represent each degree of freedom
of a manipulator. Therefore, an arbitrary point in the
C-space corresponds to one specific configuration of
the manipulator and a curve connecting two points in
the C- space exhibits the path of the manipulator.

The path planning of a manipulator based on the C-
space exhibits robust performance for static
environments. In a static environment for which
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Fig. 1. Two-link manipulator in a workspace (left) and
its configuration space (right).
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Fig. 2. PRM planner: (a) preprocessing phase and (b)
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Fig. 3. Standard model of reinforcement learning.

complete prior information is known, a global
collision-free path can be planned for the given start
and goal poses. Fig. 1 shows the C-space determined
by a simple two-link manipulator and a static
workspace with various static obstacles.

The PRM planner comprises a preprocessing phase
and a query phase. The preprocessing phase randomly
draws collision-free nodes, called milestones, in the
free C-space and constructs the roadmap by
connecting the milestones with directional two-way
curves. The query phase generates an optimized
global collision-free path by connecting the start and
goal poses to two nodes of the roadmap. For example,
if the PRM planner is applied to the C-space shown in
Fig. 1, the global path shown in Fig. 2 is obtained
through the preprocessing and query phases.

Reinforcement learning (RL) was proposed by [6,7].
As shown in Fig. 3, the RL agent that performs the
actual learning interacts continuously with the
environment outside the agent. The agent performs an
action g, in some state s, and receives a real-valued
reward r, from the environment. Through this process,
the agent learns a control policy 7 that enables it to
select the optimal action at any given state by itself.

Several conventional methods such as the temporal
difference learning method, dynamic programming,
and Monte-Carlo method [8] have been suggested for
the actual realization of reinforcement learning. In this
paper, we use Q-learning (quality learning) which is
based on the temporal difference learning method that
combines the advantages of dynamic programming
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and the Monte-Carlo method. Further, Q-learning is
suitable for incremental learning processes.

3. HYBRID PRM/RL PATH PLANNER

3.1. Path planner based on PRM and RL algorithms

In this paper, a hybrid path planning scheme based
on PRM and RL is proposed to improve the
adaptability of a PRM planner to dynamic and similar
environments. This hybrid path planner is shown in
Fig. 4. The components comprising this hybrid path
planner are described below in detail below.

The image processing system transmits the state
information of a static or dynamic environment to the
RL agent. In a static environment, the poses of static
obstacles in the workspace are recognized by
extracting their color and edge information. Then, the
image processing system checks whether the obstacle
information matches the previously provided state
information of the static environment. In a dynamic
environment, the difference image between two
successive images is used to detect a dynamic obstacle,
as shown in Fig. 5.

The C-space mapping process extracts a C-space
from a given workspace. The workspace associated
with a manipulator with DOFs is usually mapped into
a high-dimensional C-space, which is difficult to
visualize and causes computational burden due to the
long mapping process. In order to solve this problem,
dilation, quantization of high-dimensional C-space,
and the modified slice projection based on feature
extraction of obstacles are used in the C-space
mapping process.

For a dilation operation, we assume that the
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Fig. 4. Hybrid path planner based on PRM and RL.
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Fig. 5. Detection of dynamic obstacle based on
difference image: (a) image at time t, (b)
image at time 7+A¢, and (c) detected obstacle
during At.

manipulator comprises several links with an identical
circular cross section but different lengths. Then,
dilation is performed by expanding all obstacles in the
workspace by an amount equal to the radius of a link,
as shown in Fig. 6. As a result of this operation, a
manipulator with an arbitrary shape can be easily
mapped into the C-space. Further, the collision
avoidance between a manipulator and obstacles can be
improved by increasing AT during the dilation process.

A 6-DOF manipulator usually comprises a
positioning structure (joints 1, 2, and 3) to control the
position of an end-effector and an orienting structure
(joints 4, 5, and 6) to control its orientation. A
mapping process into the six-dimensional C-space
requires a substantial amount of computation.
Furthermore, the orienting structure has a minimal
effect on the collision as compared to the positioning
structure. Therefore, it is assumed in this research that
joints 4, 5, and 6 are attached to joint 3 and thus the
six-dimensional C-space is quantized into a three-
dimensional C-space.

Fig. 7 illustrates the conventional slice projection
method. Suppose an obstacle is sliced at intervals of
A6 between 6, and 6, in a given workspace. Since
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Fig. 6. Expansion of obstacles using dilation
operation.
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Fig. 7. (a) Conventional slice projection method and
(b) modified slice projection method based on
feature extraction of obstacles.
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an obstacle has a different cross-sectional shape with
respect to 8, the C-space mapping process has to be
performed repeatedly to accurately describe the shape,
thus leading to a computational burden. In order to
deal with this problem, a modified slice projection
method is proposed in this research. The angle 6’ at
which the sectional area of an obstacle becomes
maximum between &, and 6, must be found. Then,
the obstacle is assumed to have the same cross-
sectional area as the one at &' for all &, between 4,
and 6. By applying the modified slice projection
method, the obstacles in a workspace are deformed in
the configuration space. This deformed obstacle tends
to overestimate the obstacle space; however, it is
advantageous in terms of obstacle avoidance.

PRM comprises a preprocessing phase and a query
phase. However, in this hybrid path planner, only the
preprocessing phase of PRM is employed to construct
a roadmap in the C-space from a given workspace.
This roadmap is used as the state information for the
learning performed by the RL agent. When applying
the RL method, the state in an environment is defined
as the manipulator configuration given by the joint
variables 6, and 6. For example, if the current
configuration is given by 8,= ' and &= &/, then s,,
8/, 6"y and s. (6, 6') represent the state variables in
the workspace and C-space, respectively.

The action variable, which can be selected by the
agent at any arbitrary state s. (68, &), is defined as a
set of joint variables that causes the manipulator to
move from the current milestone to another on the
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Fig. 8. Definition of state variables for RL.
92 .
™ ,
H |\
5w (O, 020 50(0p.02p)
. 7 /;”W(glaa%a) ‘\\ ‘

- Ny @Oy

Sy (O1p.62p) 3

y S| s e
ac(al\w Ha) &

A, (01p562)
| >3 o

Fig. 9. Definition of the action variables for reinforce-
ment learning.
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Fig. 10. Numerical reward during RL for generation
of an optimized global path.

roadmap that is constructed by  the preprocessing
phase of the PRM. For example, if the current state is
s. (6, 6), then RL agent can take either the action
variable a.(614, 02,) or a.(61s, 63) because the states
501, Gra) and s, G2p) are only two states
accessible from the current state.

The reward of RL is a numerical evaluation for an
action selected by the agent in the current state. As
shown in Fig. 10, the agent receives a numerical
reward of », = R only when it generates a global
collision-free path from the start to the goal pose
while maintaining the distance to the obstacles that are
greater than the threshold distance throughout the path.

3.2. Q-Learning

The action-value function Q (s,, @) is defined as the
numerical value that evaluates the future influence by
the action a, chosen at the current state s. In Q-
learning, the action-value function is called a Q-value,
and the purpose of Q-learning is to employ a policy z
that helps the agent to select an action g, that makes
the Q-value maximum in a given state s,[8,9]. In this
paper, the renewal of the Q-value is performed by the
undeterministic reward and action method as follows:

O(s;,a,) < Q(s4,a;)
+a'|:”t +7/'maXQ(StJrl’atH)_Q(Swat):la

A+l

M
where « is the learning rate (0 < o < 1) that
determines the convergence rate of learning and y is
the discount rate (0 < y < 1) that decides the relative
ratio between the immediate reward at the current
state s, and the delayed reward at the future state s,
The agent performs learning on all local paths that
connect each milestone on the roadmap to reach the
goal pose because it is rewarded only when it reaches
the goal pose through the roadmap.

In this process, the Q-values for the local paths on
the roadmap are renewed continuously by (1). Fig. 11
shows a portion of the learning process performed by
the RL agent using (1) when o= 0.5 and y=0.5.
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Fig. 11. Learning trial for a given roadmap by the
agent’s policy using reinforcement.

As shown in the above example, the Q-value
increases with the amount of learning, when the agent
performs learning for a given environment. If the
learning process is completed, the learning data are
obtained so that different weights can be assigned to
each local path on the roadmap. Therefore, it is
possible to generate the optimized global path by
combining the local paths that have the maximum Q-
values from the start to the goal pose on the roadmap
in the static environment, as shown in Fig. 12.

The leamning data and optimal global path are

Optimized global path

Q-valie

Fig. 12. Results of reinforcement learning for a given
roadmap: (a) Q-values, and (b) optimal global

path.
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Fig. 13. Renewal of learning data: (a) renewal of Q-
values and (b) renewal of global path caused
by the occurrence of a dynamic obstacle.

generated as shown in Fig. 12. Suppose a dynamic
obstacle blocking the pre-planned global path is
detected at an arbitrary milestone during the real
manipulation process. In this case, the RL agent
updates the learning data generated previously by
setting all Q-values related to that milestone to zero.
The agent then regenerates another collision-free
global path by using the updated Q-values. If the
agent has collected sufficient learning data for a given
environment (e.g., 16 learning data), it can avoid
dynamic obstacles in real-time by using the previous
learning data without additional learning as shown in
Fig. 13.

3.3. Experimental results

In order to verify the validity of the proposed
hybrid PRM/RL path planner, various experiments
have been conducted for the environment shown in
Fig. 14. The manipulator used for the experiments was
a Samsung FARAMAN AS-1i with 6 DOFs. A stereo
camera, Videre STH-MDCS2, was installed on the
ceiling to model the environment and detect dynamic
obstacles. This camera can provide the range data for
each pixel in the image. The C-space was extracted
from a given workspace by the modified slice
projection method mentioned previously. A total of
210 milestones were used to generate a sufficient
number of collision-free nodes in the extracted C-
space.

Fig. 15 shows the collision-free global path that
was optimized from the learning data obtained by
applying reinforcement learning to a roadmap
constructed in the preprocessing phase of PRM for the
static environment shown in Fig. 14. It is shown that
the proposed hybrid PRM/RL path planner can
provide a smoother path than the path planner based
on only PRM which is difficult to visualize.

As shown in Fig. 16, if a dynamic obstacle blocks
any milestone on the pre-planned global path during
the real manipulation process, a manipulator executed
by the PRM alone is likely to collide with this
obstacle since PRM does not include any procedure
that causes the manipulator to move to the nearby
milestones where a collision can be avoided. However,

Stereo vision camera  Free space_ C (ZHd gOaD
Obstacle
] space
B B (1st goal) B( Ist goaly

i A(Start)

() (b)

Fig. 14. Constructed environment for first experiment:
(a) its workspace and (b) its configuration
space.



Path Planning for a Robot Manipulator based on Probabilistic Roadmap and Reinforcement Learning 679

Hybrid PRM-RL planner » , & (2nd goal)

£

Fig. 15. Global paths for static environment (experi-
ment).

nly
*
»
%
5 Dynamic
A » obstacle
.t at B
(1st goal)

Fig. 16. Global paths for a dynamic environment
{experiment).

the hybrid path planner regenerates another global
collision-free path in real-time by resetting all Q-
values related to the milestone occupied by the
dynamic obstacle to zero by detecting the positional
information of the dynamic obstacle from the stereo
camera. Since the hybrid path planner extracts the
optimal path based on the Q-values updated above, it
can generate a new collision-avoidance path without
performing learning again for this dynamic environ-
ment.

4. ADAPTABILITY TO SIMILAR
ENVIRONMENTS

The environments in which a service robot operates
tend to vary frequently for various reasons. Therefore,
the path planner must be capable of adapting to new
environments with minimal learning once they are
similar to the ones learned previously.

In order to perform learning for a given
environment, the RL agent must collect and analyze
various experiments for the current state, the action
chosen by the agent, the state transition by action
selection, and the best action maximizing the reward.
The agent must strike a balance between new
exploration for a given environment and exploitation
based on the existing learning data [9]. The reward for
this procedure is given by

Exploitation rate, p;

14 1 0.8 0.6 0.4 0.2 0

13.6
13.2

r,=R-(e7Pr +e ¥)
12.8
12.4

Numerical rewards, #,

12

0 0.2 0.4 0.6 0.8 1
Exploration rate, p,

Fig. 17. Modified numerical reward for optimization
of path planning.

r=R-(e" +eP), ptp=1, @)

where p, denotes the exploration rate defined as the
ratio of the number of new explorations for a given
environment to the total amount of learning. Similarly,
the exploitation rate p; is defined as the ratio of the
number of exploitations based on the existing learning
data to the total amount of learning. As shown in Fig.
17, an identical reward is given irrespective of
exploration or exploitation.

Various experiments were conducted to verify the
adaptability of the hybrid path planner to similar
environments. First, the agent performed learning 100
times for environment A shown in Fig. 18. Next, it
performed learning 100 times for environments B and
C, which were similar to environment A.
Environments B and C were varied from A by making
slight changes to the positions of the obstacles.

Fig. 19 shows the experimental results showing the
adaptability of the hybrid path planner to similar
environments. Whenever the agent is given a new
environment, it does not know whether this
environment is a completely new (e.g., environment
A) or is similar to one that has already been learned
(e.g., environments B and C). Since the characteristics
of the environment are determined in the decision
period during which both exploration and exploitation
are performed to identical extents, the agent performs
reinforcement learning in a different manner. If a
given environment is completely new, the hybrid path
planner performs learning with a higher exploration
rate and lower exploitation rate, implying that the

™
H :.g)al m H L
St/art &Obstacle
Environment A

Environment B Environment C

Fig. 18. Three slightly different environments used
for investigating the adaptability to similar
environments.
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Fig. 19. Optimization of path planning by striking a
balance between exploration and exploita-
tion.

agent tends to make new attempts continuously for a
given environment. On the other hand, if a given
environment is similar to one learned previously, the
agent performs learning with a higher exploitation rate
and lower exploration rate, implying that it tends to
exploit the previous learning data.

5. CONCLUSIONS

In this paper, we propose a hybrid path planner
based on PRM and reinforcement learning to enable
the manipulator to deal with both static and dynamic
environments and to adapt to similar environments.
From various experiments, the following conclusions
are drawn:

1. The hybrid path planner can generate a collision-
free optimal global path in static environments,
provided the environment is known in advance. If a
sufficient amount of learning can be performed and
the Q-values can be imposed on the local paths on the
roadmap, the optimal global path can be generated by
combining the local paths having the maximum Q-
values.

2. The hybrid path planner can deal with dynamic
environments in which an obstacle blocks any
milestone on the pre-planned global path by
regenerating another collision-free global path without
additional learning.

3. The hybrid path planner can effectively and
robustly adapt to the environments that are identical or
similar to the ones learned by autonomously adjusting
a balance between exploration and exploitation.
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