• Title/Summary/Keyword: block learning

Search Result 320, Processing Time 0.025 seconds

A Study on the Change of the Perception of Students' Computational Thinking and Scientific Attitudes in Earth Science Classes Using a Block-based Coding (블록형 코딩프로그램을 활용한 지구과학 수업에서 학생들의 컴퓨팅 사고력에 대한 인식 및 과학적 태도 변화 연구)

  • Han, Shin;Kim, Hyoungbum
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.2
    • /
    • pp.131-140
    • /
    • 2019
  • In this study, a block-base coding that could develop computing thinking was applied to Earth science teaching and learning to identify how the perception of computational thinking and scientific attitude was changed as part of creativity education. Based on the results of the study, the conclusions are as follows: First, an Earth science education program was developed using a block-based coding for elementary school students. The 12-hour program was designed for inquiry activities to encourage students to engage in various thinking by providing them with activity-oriented problems. Second, the Earth science education program using a block-based coding showed significant results in confidence in the use of a computer program, integrated learning with a computer, computational thinking, and problem-solving factors with computational thinking. Third, the Earth science education program using block-based coding showed significant differences in the categories of curiosity, criticism, cooperation, persistence, and creativity. It could be judged that it was effective for students in the process of questioning and trying to solve the problem themselves.

Predictive Analysis of Ethereum Uncle Block using Ensemble Machine Learning Technique and Blockchain Information (앙상블 머신러닝 기법과 블록체인 정보를 활용한 이더리움 엉클 블록 예측 분석)

  • Kim, Han-Min
    • Journal of Digital Convergence
    • /
    • v.18 no.11
    • /
    • pp.129-136
    • /
    • 2020
  • The advantages of Blockchain present the necessity of Blockchain in various fields. However, there are several disadvantages to Blockchain. Among them, the uncle block problem is one of the problems that can greatly hinder the value and utilization of Blockchain. Although the value of Blockchain may be degraded by the uncle block problem, previous studies did not pay much attention to research on uncle block. Therefore, the purpose of this study attempts to predict the occurrence of uncle block in order to predict and prepare for the uncle block problem of Blockchain. This study verifies the validity of introducing new attributes and ensemble analysis techniques for accurate prediction of uncle block occurrence. As a research method, voting, bagging, and stacking ensemble analysis techniques were employed for Ethereum's uncle block where the uncle block problem actually occurs. We used Blockchain information of Ethereum and Bitcoin as analysis data. As a result of the study, we found that the best prediction result was presented when voting and stacking ensemble techniques were applied using only Ethereum Blockchain information. The result of this study contributes to more accurately predict the occurrence of uncle block and prepare for the uncle block problem of Blockchain.

Multiple Hint Information-based Knowledge Transfer with Block-wise Retraining (블록 계층별 재학습을 이용한 다중 힌트정보 기반 지식전이 학습)

  • Bae, Ji-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.43-49
    • /
    • 2020
  • In this paper, we propose a stage-wise knowledge transfer method that uses block-wise retraining to transfer the useful knowledge of a pre-trained residual network (ResNet) in a teacher-student framework (TSF). First, multiple hint information transfer and block-wise supervised retraining of the information was alternatively performed between teacher and student ResNet models. Next, Softened output information-based knowledge transfer was additionally considered in the TSF. The results experimentally showed that the proposed method using multiple hint-based bottom-up knowledge transfer coupled with incremental block-wise retraining provided the improved student ResNet with higher accuracy than existing KD and hint-based knowledge transfer methods considered in this study.

Design of Machine Learning Education Program for Elementary School Students Based on Sound Data (소리 데이터를 활용한 블록 기반의 초등 머신러닝 교육 프로그램 설계)

  • Ko, Seunghwan;Lee, Junho;Moon, Woojong;Kim, Jonghoon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.7-11
    • /
    • 2021
  • This study designs block-based machine learning education program using sound data that can be easily applied in elementary schools. The education program designed its goals and directions based on the results of a demand analysis conducted on 70 elementary school teachers in advance according to the ADDIE model. Scratch in Machine Learning for Kids was used for block-based programming, and the education program was designed to discover regularity of data values using sound data, learn the principles of artificial intelligence, and improve computational thinking in the programming process. In a later study, the education program needs to verify what changes there are in attitudes and computational thinking about artificial intelligence.

  • PDF

Blockchain based Learning Management Platform for Efficient Learning Authority Management

  • Youn-A Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.231-238
    • /
    • 2023
  • As the demand for distance education increases, interest in the management of learners' rights is increasing. Blockchain technology is a technology that guarantees the integrity of the learner's learning history, and enables learner-led learning control, data security, and sharing of learning resources. In this paper, we proposed a blockchain technology-based learning management system based on Hyperledger Fabric that can be verified through permission between nodes among blockchain platforms. Learning resources can be shared differentially according to the learning progress. Also the percentage of individual learners that can be managed. As a result of the study, the superiority of the platform in terms of convenience compared to the existing platform was demonstrated. As a result of the performance evaluation for the research in this paper, it was confirmed that the convenience was improved by more than 5%, and the performance was 4-5% superior to the existing platform in terms of learner satisfaction.

Distributed AI Learning-based Proof-of-Work Consensus Algorithm (분산 인공지능 학습 기반 작업증명 합의알고리즘)

  • Won-Boo Chae;Jong-Sou Park
    • The Journal of Bigdata
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The proof-of-work consensus algorithm used by most blockchains is causing a massive waste of computing resources in the form of mining. A useful proof-of-work consensus algorithm has been studied to reduce the waste of computing resources in proof-of-work, but there are still resource waste and mining centralization problems when creating blocks. In this paper, the problem of resource waste in block generation was solved by replacing the relatively inefficient computation process for block generation with distributed artificial intelligence model learning. In addition, by providing fair rewards to nodes participating in the learning process, nodes with weak computing power were motivated to participate, and performance similar to the existing centralized AI learning method was maintained. To show the validity of the proposed methodology, we implemented a blockchain network capable of distributed AI learning and experimented with reward distribution through resource verification, and compared the results of the existing centralized learning method and the blockchain distributed AI learning method. In addition, as a future study, the thesis was concluded by suggesting problems and development directions that may occur when expanding the blockchain main network and artificial intelligence model.

Related-key Neural Distinguisher on Block Ciphers SPECK-32/64, HIGHT and GOST

  • Erzhena Tcydenova;Byoungjin Seok;Changhoon Lee
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.72-84
    • /
    • 2023
  • With the rise of the Internet of Things, the security of such lightweight computing environments has become a hot topic. Lightweight block ciphers that can provide efficient performance and security by having a relatively simpler structure and smaller key and block sizes are drawing attention. Due to these characteristics, they can become a target for new attack techniques. One of the new cryptanalytic attacks that have been attracting interest is Neural cryptanalysis, which is a cryptanalytic technique based on neural networks. It showed interesting results with better results than the conventional cryptanalysis method without a great amount of time and cryptographic knowledge. The first work that showed good results was carried out by Aron Gohr in CRYPTO'19, the attack was conducted on the lightweight block cipher SPECK-/32/64 and showed better results than conventional differential cryptanalysis. In this paper, we first apply the Differential Neural Distinguisher proposed by Aron Gohr to the block ciphers HIGHT and GOST to test the applicability of the attack to ciphers with different structures. The performance of the Differential Neural Distinguisher is then analyzed by replacing the neural network attack model with five different models (Multi-Layer Perceptron, AlexNet, ResNext, SE-ResNet, SE-ResNext). We then propose a Related-key Neural Distinguisher and apply it to the SPECK-/32/64, HIGHT, and GOST block ciphers. The proposed Related-key Neural Distinguisher was constructed using the relationship between keys, and this made it possible to distinguish more rounds than the differential distinguisher.

  • PDF

Improvements in Patch-Based Machine Learning for Analyzing Three-Dimensional Seismic Sequence Data (3차원 탄성파자료의 층서구분을 위한 패치기반 기계학습 방법의 개선)

  • Lee, Donguk;Moon, Hye-Jin;Kim, Chung-Ho;Moon, Seonghoon;Lee, Su Hwan;Jou, Hyeong-Tae
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.2
    • /
    • pp.59-70
    • /
    • 2022
  • Recent studies demonstrate that machine learning has expanded in the field of seismic interpretation. Many convolutional neural networks have been developed for seismic sequence identification, which is important for seismic interpretation. However, expense and time limitations indicate that there is insufficient data available to provide a sufficient dataset to train supervised machine learning programs to identify seismic sequences. In this study, patch division and data augmentation are applied to mitigate this lack of data. Furthermore, to obtain spatial information that could be lost during patch division, an artificial channel is added to the original data to indicate depth. Seismic sequence identification is performed using a U-Net network and the Netherlands F3 block dataset from the dGB Open Seismic Repository, which offers datasets for machine learning, and the predicted results are evaluated. The results show that patch-based U-Net seismic sequence identification is improved by data augmentation and the addition of an artificial channel.

Single Image Super Resolution using Multi Grouped Block with Adaptive Weighted Residual Blocks (적응형 가중치 잔차 블록을 적용한 다중 블록 구조 기반의 단일 영상 초해상도 기법)

  • Hyun Ho Han
    • Journal of Digital Policy
    • /
    • v.3 no.3
    • /
    • pp.9-14
    • /
    • 2024
  • In this paper, proposes a method using a multi block structure composed of residual blocks with adaptive weights to improve the quality of results in single image super resolution. In the process of generating super resolution images using deep learning, the most critical factor for enhancing quality is feature extraction and application. While extracting various features is essential for restoring fine details that have been lost due to low resolution, issues such as increased network depth and complexity pose challenges in practical implementation. Therefore, the feature extraction process was structured efficiently, and the application process was improved to enhance quality. To achieve this, a multi block structure was designed after the initial feature extraction, with nested residual blocks inside each block, where adaptive weights were applied. Additionally, for final high resolution reconstruction, a multi kernel image reconstruction process was employed, further improving the quality of the results. The performance of the proposed method was evaluated by calculating PSNR and SSIM values compared to the original image, and its superiority was demonstrated through comparisons with existing algorithms.

The Intelligence APP development for children's Kanji character education using Block and Stop motion

  • Jung, Sugkyu
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.66-72
    • /
    • 2016
  • With the growing shift from traditional educational approaches and studying to the more digital classroom, using electronic textbooks and digital native's demand, there is a growing need to develop new methods for learn Kanji characters for children. The purpose of this study is to help children learn the basic Kanji by using stop motion and block methods, and approaching the basic Kanji character education with a more innovative and interactive smart phone APP. In the development of this smart phone App for children's Kanji character education proposed in this study, 100 basic Kanji characters for children are selected. These 100 characters are required for the stop motion animation production, where each selected Kanji is created as a stop-motion animation utilizing a variety of techniques, such as storytelling, to better engage children. The intelligent App is designed with image recognition technology, so that in the learning process children take a picture for the assembled block using their smart phone, the APP then recognizes whether it is assembled correctly, and then plays an animation corresponding to the assembled Kanji character.