• 제목/요약/키워드: blended concrete

검색결과 282건 처리시간 0.025초

혼합형 저발열 시멘트를 사용한 콘크리트의 초유동성 및 내해수성에 관한 연구 (A Study on the Resistance to Sea Water and High Flowing Properties of Concrete Using Blended Low Heat Cement)

  • 송용순;노재호;강석화
    • 콘크리트학회지
    • /
    • 제10권6호
    • /
    • pp.281-289
    • /
    • 1998
  • 본 연구는 해양 매스 콘크리트 구조물인 서해대교 사장교 주탑기초(L${\times}$D${\times}$H : 66${\times}$28${\times}$32~38.2)에 콘크리트 타설시 다짐작업을 생략할 수 있고, 수화열에 의한 온도균열 발생을 제어할 수 있는 콘크리트의 사용에 대하여 적극적으로 검토한 것으로서 혼합형 저발열 시멘트를 사용한 초유동 콘크리트와 현장에서 사용중인 5종 시멘트를 사용한 25-240-15 보통 콘크리트를 주탑 기초 일부분에 적용하여 유동성, 강도발현 성능, 재료분리 저항성, 수화열, 내해수성 등을 비교 평가한 것이다. 그 결과, 저발열시멘트를 사용한 초유동 콘크리트는 별도의 다짐 작업없이도 우수한 작업성과 자기 충전성, 재료분리 저항성을 나타냈으며, 5종시멘트를 사용한 25-240-15보통 콘크리트보다 단위시멘트량이 54kg/$m^2$ 정도 증가했음에도 불구하고 오히려 수화열은 $10^{\circ}C$이상 저감되어 온도균열 제어에 매우 효과적임을 확인할 수 잇었다. 또한 부재에서 채취한 코아의 압축강도는 5종시멘트를 사용한 25-240-15 보통 콘크리트와 동등한 강도 발현율을 나타내었다. 특히 해수중 염소이온의 침투에 대한 저항성을 평가하기 위해 실시한 촉진 염소이온침투 시험결과 통과전하량이 5종 보통 콘크리트보다 5배정도 낮게 나타났으며, 기타 화학물질에 대한 저항성은 비슷한 경향을 보였다. 따라서 저발열 시멘트를 사용한 초유동 콘크리트는 유동성개선에 의한 다짐 작업의 생략 효과와 더불어 수화열 저감 효과에 따른 온도균열제어 및 공기단축 등으로 주탑기초의 콘크리트에 매우 유리한 시멘트라고 판단되었다.

삼성분계 시멘트를 사용한 콘크리트의 내구성 (Durability of Concrete Using Ternary Blended Cement)

  • 심은철;배수호;박광수;이준구;임병탁;하재담
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.78-81
    • /
    • 2003
  • Recently, physical properties of concrete containing ternary blended cement were actively researching to develop durability, mobility, and atc. as well as strength increase of concrete. In this study, durability of concrete such as the resistance against chloride ion penetration, rebar corrosion, freeze and thaw, and sulfate were researched for concrete containing ordinary portland cement(OPC) and ternary blended cement(TBC), respectively. For this purpose, concrete specimens containing OPC and TBC, respectively, were made for 37.5% of W/C, and then various durability experiments described above were carried out. As a result, it was observed from the test that concrete containing TBC showed excellent durability than concrete containing OPC.

  • PDF

Predicting compressive strength of bended cement concrete with ANNs

  • Gazder, Uneb;Al-Amoudi, Omar Saeed Baghabara;Khan, Saad Muhammad Saad;Maslehuddin, Mohammad
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.627-634
    • /
    • 2017
  • Predicting the compressive strength of concrete is important to assess the load-carrying capacity of a structure. However, the use of blended cements to accrue the technical, economic and environmental benefits has increased the complexity of prediction models. Artificial Neural Networks (ANNs) have been used for predicting the compressive strength of ordinary Portland cement concrete, i.e., concrete produced without the addition of supplementary cementing materials. In this study, models to predict the compressive strength of blended cement concrete prepared with a natural pozzolan were developed using regression models and single- and 2-phase learning ANNs. Back-propagation (BP), Levenberg-Marquardt (LM) and Conjugate Gradient Descent (CGD) methods were used for training the ANNs. A 2-phase learning algorithm is proposed for the first time in this study for predictive modeling of the compressive strength of blended cement concrete. The output of these predictive models indicates that the use of a 2-phase learning algorithm will provide better results than the linear regression model or the traditional single-phase ANN models.

3성분계 시멘트를 사용한 매스콘크리트의 시공사례 (An Application of the Mass Concrete Using Ternary Blended Cement)

  • 권영호;하재담;전성근;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1229-1234
    • /
    • 2001
  • The bottom slab of Inchon LNG in-ground #213 tank is designed as a massive structure witch has a large depth and section. The purpose of this study is to determine the optimum mix design having good workability and low hydration heat for bottom slab concrete and to control the actual concrete quality in site. For this purpose, we select the optimum mix design used ternary blended cement(furnace slag cement+fly ash) and design factors. As test results of actual application, we have finish placing the bottom slab concrete of 23,180㎥ during 68hours with good success and obtain the good quality of fresh and hardened concrete including slump, air contents, no-segregation, compressive strength and low hydration heat in actual data. All test results are satisfied with our specifications for bottom slab concrete and we cut costs as the use of ternary blended cement and the reduction of placing hours.

  • PDF

Prediction of compressive strength of slag concrete using a blended cement hydration model

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.247-262
    • /
    • 2014
  • Partial replacement of Portland cement by slag can reduce the energy consumption and $CO_2$ emission therefore is beneficial to circular economy and sustainable development. Compressive strength is the most important engineering property of concrete. This paper presents a numerical procedure to predict the development of compressive strength of slag blended concrete. This numerical procedure starts with a kinetic hydration model for cement-slag blends by considering the production of calcium hydroxide in cement hydration and its consumption in slag reactions. Reaction degrees of cement slag are obtained as accompanied results from the hydration model. Gel-space ratio of hardening slag blended concrete is determined using reaction degrees of cement and slag, mixing proportions of concrete, and volume stoichiometries of cement hydration and slag reaction. Furthermore, the development of compressive strength is evaluated through Powers' gel-space ratio theory considering the contributions of cement hydration and slag reaction. The proposed model is verified through experimental data on concrete with different water-to-binder ratios and slag substitution ratios.

시멘트 혼합재 첨가에 따른 콘크리트 내구 특성 (A Study on the Durability of Concrete made with Various Cements Containing Additive)

  • 김창범;조계흥;최재웅;김동석;박춘근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.687-692
    • /
    • 1998
  • This paper covers concrete durability made with portland cement type I and V, and granulated blast furnace slag blended cements 40 and 60%. Typical properties of cements and compressive strength development, drying shrinkage, carbonation, freezing and thawing properties of concretes were investigated. In addition, effects of CI penetration on various concretes with/without a freezing and thawing treatment were also studied. Portland cement type I and V were superior to the blended cement in the properties of compressive strength development, drying shrinkage, carbonation and freezing and thawing durability. In the respect of resistant of CI Blended cement showed better than the portland cement due to high permeability. But the blended cement with a freezing and thawing treatment presented a much decreased resistance of CI penetration.

  • PDF

혼합시멘트 수화모델을 이용한 콘크리트의 단열온도상승 예측에 관한 연구 (The Evaluation of Adiabatic Temperature rise in Concrete by Using Blended Cement Hydration Model)

  • 왕소용;조형규;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.31-32
    • /
    • 2011
  • Granulated slag from metal industries and fly ash from the combustion of coal are industrial by-products that have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, the hydration of concrete containing fly ash or slag is much more complex compared with that of Portland cement. In this paper, the production of calcium hydroxide in cement hydration and its consumption in the reaction of mineral admixtures is considered in order to develop a numerical model that simulates the hydration of concrete containing fly ash or slag. The heat evolution rates of fly ash- or slag-blended concrete is determined by the contribution of both cement hydration and the reaction of the mineral admixtures. Furthermore, the temperature distribution and temperature history in hardening blended concrete are evaluated based on the degree of hydration of the cement and the mineral admixtures. The proposed model is verified through experimental data on concrete with different water-to-cement ratios and mineral admixture substitution ratios.

  • PDF

혼합계시멘트를 사용한 콘크리트의 염화물이온 침투 및 확산특성 (The Penetration and Diffusivity of Chloride ion into Concrete using Blended Cement)

  • 양승규;김동석;엄태선;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.489-492
    • /
    • 2006
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon and numerous methods have been proposed to determine the diffusion coefficient of chloride ion quickly. In this study, electrically accelerated experiments were carried out in order to evaluate diffusion coefficient of the chloride ion into concrete. The methods were diffusion cell test method in which the voltage of 15V(DC) was applied. The type of cement is blended cement in which the admixtures of blast-furnace slag and fly ash were used. In conclusion, the diffusion coefficient of chloride ion is much affected according to mineral admixtures and the diffusion coefficient of ternary blended cement showed very low values. it is presumably said that this result is due to highly densified pore structures by the aid of slag substitution and pozzolanic activity of fly ash.

  • PDF

잔골재 혼합사용이 석회암 굵은 골재 사용 초고강도 콘크리트의 유동특성에 미치는 영향 (Effect of Mixed Use of Fine Aggregates on the Flowability of Ultra High Strength Concrete)

  • 이홍규;김민영;이순재;조만기;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.73-74
    • /
    • 2015
  • As this study is one related to ultra high strength concrete using crushed coarse limestone aggregates among the series of experiments for improving the economic inefficiency of the ultra high strength concretes used for high rise structures, it has analyzed the flowability of ultra high strength concrete according to the variation of blended fine aggregates. As a result of analyzing the characteristics of fresh concrete, it is determined that the application of ultra high strength concrete would be difficult in case of a mix using blended fine aggregates as lower flowability than the mix using limestone crushed fine aggregate only was shown in all mixes using blended fine aggregates.

  • PDF

Corrosion Resistance Properties of Rice Husk Ash Blended Concrete

  • Ganesan, K.;Rajagopal, K.;Thangavel, K.
    • Corrosion Science and Technology
    • /
    • 제6권1호
    • /
    • pp.12-17
    • /
    • 2007
  • Portland cement incorporating supplementary cementing material develops excellent mechanical properties and long term durability characteristics. India is a leading rice producing country and rice husk is considered as waste in the rice milling industries. In this present work, the rice husk ash (RHA) was added to concrete as cement replacement from 0 to 30%. Corrosion performance of reinforcing steel embedded in RHA blended concretes was studied using linear polarization, AC impedance and gravimetric methods. The corrosion rate of steel bars embedded in RHA concretes were compared with control concrete. The results clearly indicate that the corrosion rate of reinforcing steel embedded in concrete is significantly reduced with the incorporation of RHA. A good correlation among gravimetric method and electrochemical methods was observed. Electrochemical impedance study showed 98 percentage reduction in corrosion rate to the RHA blended concrete with 15% replacement than control concrete.