• Title/Summary/Keyword: bleaching

Search Result 615, Processing Time 0.024 seconds

Modeling and Optimizing Brightness Development in Peroxide Bleaching of Thermomechanical Pulp

  • Wang, Li-Jun;Park, Kyoung-Hwa;Yoon, Byung-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.86-94
    • /
    • 1999
  • Alkaline peroxide bleaching of chemi-mechanical pulp is a very complicated system where various process factors affect the bleacing performance and pulp properties. Traditional onefactor-at a time method is ineffective and costly infinding the optimal bleaching conditions. In this study, statistical experimental design and multiple regression method wre used to investigated the interactions among various bleaching factors and to find out the possbile maximal brightness development during one stage alkaline peroxide bleacing of TMP. The TMP was made from 10% Korean red pine and 90% Korean spruce and had an initial brightness of 54.5% ISO. the TMP was pretreated with EDTA(0.5% on O.D. pulp, 3% pulp consistency, 30$^{\circ}C$ for 60 minutes) and bleached in a 2 L Mark V Quantum Reactor at 750 rmp, 7.5% of bleaching consistency and with 0.05% magnesium sulfate addition. The ranges of chemical factors studied , based on oven-ried pulp, were 1-5% for hydrogen peroxide, 1-4% for sodium hydroxide and 1-4% for sodium silicate. The rages of reaction temperature and time were 50-90$^{\circ}C$ and 40-180minutes respectively. Interactions of hydrogen peroxide with alkali , time with temperature ature, alkali with time and silicate with temperature were found to be significant which means that hydrogen peroxide bleaching will be favored at stable concentration of perhydroxyl ion, relatively short time and low temperature, and high level of silicate. Mathematical model which has good predictability for target brightness in one stage peroxide bleaching can also be established easily. Base ion the model, maximal brightness of 70% ISO was found to at 50$^{\circ}C$ and 50 minutes by chemical additions of 5% for hydrogen peroxide, 3.2-3.4% for sodium hydroxide and 4% for silicate based on O.D. pulp. However, this result might not be suitable for situation where furnishes are different from ours, or different pretreatment is used, or bleaching carried out at different pulp consistency. In these cases it will be good to re-investigate the process by a similar methodology as was used in this study.

  • PDF

Optimizing and Modeling Brightness Development in Peroxide Bleaching of Thermomechanical Pulp

  • Yoon, Byung-Ho;Wang, Li-Jun;Park, Soo-Kyoung;Kim, Dong-Yoon
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11a
    • /
    • pp.180-186
    • /
    • 1999
  • Alkaline peroxide bleaching of (chemi) mechanical pulp is a very complicated system where various process factors affect the bleaching performance and pulp properties. Traditional on-factor-at a time method is ineffective and costly in finding the optimal bleaching conditions. In this study statistical experimental methods which include three steps. I. e. screening, response surface modeling and optimization, were used to find the conditions for maximal brightness development during one stage alkaline peroxide bleaching of TMP which had an initial brightness of 54.5% Elerpho. The TMP was pretreated with EDTA(0.5% on O. D. pulp. consistency, $30^{\circ}C$ for 60 minutes) and bleached in a 2L Mark V Quantum Reactor at 750rpm, 7.5% of bleaching consistency and with 0.05% magnesium sulfate addition. The ranges of other factors studied were 1~5% hydrogen peroxide on O. D plup, 1~4% sodium hydroxide on O. D pulp and 1~4% sodium silicate on O. D pulp, reaction temperature 50~$90^{\circ}C$ and reaction time 40~180minutes. A models with good predictability was established and the maximal brightness after one stage bleaching was found to be 70% Elerpho at $50^{\circ}C$, 50 minutes 5% hydrogen peroxide on O. D. pulp 3.2~3.4% sodium hydroxide on O. D. pulp 3.2~3.4% sodium hydroxide on O. D pulp and 4% silicate on O. D pulp. However further studies on other pulp properties such as strength and brightness stability shall be carried out in order to find out the optimal bleaching conditions.

  • PDF

Effect of Xylanase Pre-and Post-Treatment on oxygen Bleaching of Oak Kraft Pulp

  • Kim, Dong-Ho;Paik, Ki-Hyon
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11a
    • /
    • pp.194-204
    • /
    • 1999
  • The use of genetically cloned xylanase acquired from Bacillus strearthermophillus improves bleachability for oak kraft pulps. Combination of xylanase(X). oxygen(O), ozone(Z). peroxide(P), alkaline extraction(Eo. Eop), and chlorination(C/D, D) have been tested in a variety of bleaching sequences. The effectiveness of xylanase pre-treatment(XO) and post-treatment(OX) in oxygen bleaching is mainly compared. With xylanase treatment the brightness increase by 1.5-2.1% ISO in OZEP, OZEoP, OZEopP and OPZP sequences. There is only numerically difference of brightness gains between OX and XO sequences. With xylanase treatment chemical requirements for bleaching decrease by 42.6-48.6% in OC/DEoD sequence and 47.9-54.7% as active chlorine in OC/DEopD sequence at the same brightness. the reduction of bleaching chemicals is higher in XO sequence than those in OX sequence. Following xylanase treatment the viscosity increases from 11.7-12.0 mPa·s to 12.4-13.5 mPa·s and the brightness stability is considerably improved however the difference of effectiveness between XO and OX sequence is not present. Compared to tensile index vs tear index, the physical properties are similar for TCF bleaching sequences with and without xylanase treatments. However in OC/DEoD and OC/DEopD sequences the physical properties decrease with xylanase treatment. There is no difference in the physical properties between XO and OX sequences. COD, BOD and color of bleaching effluents increase slightly with xylanase treatment, however the discharge of COD end-load into environmental impact decrease.

  • PDF

Bleaching of Lipids Extracted from Single Cell Oil Produced by Mortierella sp. (모르티에렐라(Mortierella)속 유래 단세포유지로부터 추출한 지방질의 탈색)

  • Kim, Sun-Ki;Chung, Guk-Hoon;Han, Jeong-Jun;Cho, Sang Woo;Yoon, Suk Hoo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.405-408
    • /
    • 2015
  • The deacidified oil obtained from the oleaginous fungus, Mortierella sp. (M-12) was bleached, after degumming, using activated clay under a 50-100 mmHg vacuum. The bleaching conditions were partially optimized as follows: activated clay, 1%, bleaching temperature $90^{\circ}C$, and treatment time 20 min. After bleaching, the color of bleached oil as determined by the Lovibond Tintometer, satisfied the specification for edible fats and oils. The bleaching process also decreased the contents of free fatty acids and phosphorus in the deacidified oil. The acid value of the bleached oil also satisfied the specification for edible fats and oils. It was early shown that the normal bleaching process can be used for the bleaching of heavily-colored microbial lipids for human consumption.

Ultrastructural Changes of Hair Treated with Bleaching Agent (탈색된 머리카락의 미세구조적 변화)

  • Chang, Byung-Soo;Lee, Gwi-Yeong
    • Applied Microscopy
    • /
    • v.36 no.1
    • /
    • pp.25-33
    • /
    • 2006
  • This study applied a bleaching agent. which is commonly used in the beauty salons, to the hair of normal adult women, collected the hair immediately and 10 days and 20 days from the bleaching, were investigated the degree of degradation of the hair by using scanning and transmission electron microscopes. The surface of hair just after bleaching was observed to be similar to that of normal hair, showing no split or damage of scale. In the hair of 10 days after bleaching, however, the scale came off. From this time, scale on the cuticular layer of hair began to be separated. In 10 days from bleaching, the scale on the cuticular layer was separated from hair and some cytoplasm of cuticular cells was broken into pieces or fell off. The cell remains made the surface coarse and uneven. At this period, damaged scales had a sharp end. In the hair of 20 days after bleaching, scale fell off from the whole surface of the hair and the surface looked rough. On the bleached hair, many vacuoles were formed in the endocuticle of cuticular cells. As a result, deformation caused by the formation of vacuoles in cuticles broke up the cuticular cells.

Studies on the Sequestering Agents to Replace Silicate in Peroxide Bleaching System (과산화수소 보존표백시 Silicate 대체 약품에 관한 연구)

  • Kim, Sung-Kwon;Choung, Sung Wook;Michalowski, R.J.
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.754-757
    • /
    • 1998
  • This study was carried out to investigate the effect of replacing silicate by Versenate PS peroxide stabilizer in a peroxide bleaching system of deinked pulp process. To evaluate the possibility of replacement, optimization of pretreatment and caustic in bleaching for stock treated with silicate and Versenate PS were performed. After these performance, residual peroxide content and brightness were measured. Results obtained form this study were summarized as follows : 1. Caustic concentration in bleaching system treated with silicate was optimized at 2.5~3.0%. 2. Caustic concentration in bleaching system treated with Versenate PS was optimized at 1.0~1.5%. 3. Versenate PS alone did not provide satisfying bleaching effect. 4. Bleaching system treated with Versenate PS had potential to reduce silicate. 5. DTPA pretreatment provided higher bleaching efficiency.

  • PDF

Laboratory model to evaluate efficacy of an experimental titanium oxide nanofibers bleaching agent

  • Clayton Tran ;Ellin Choi ;Brittany Watu;Udochukwu Oyoyo;Christopher Perry ;So Ran Kwon
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.47.1-47.9
    • /
    • 2021
  • Objectives: This study aimed to use a laboratory model to evaluate the efficacy of an experimental bleaching agent. Materials and Methods: The model used human extracted molars that were treated and measured for bleaching efficacy. Teeth (n = 50) were distributed into 5 groups: Negative control (NC): immersion in water for 8 hours; Nanofibers (NFs): Experimental titanium dioxide nanofibers with stirring and light activation for 8 hours; Whitestrips (WS): Crest 3D White Glamorous White Whitestrips, 2 applications daily for 30 minutes, 14 days; 1% hydrogen peroxide (HP) standard: 1% hydrogen peroxide for 8 hours; and 30% HP standard: 30% hydrogen peroxide for 8 hours. Instrumental measurements were performed using a spectrophotometer. Results were recorded at baseline, 1-day post-bleaching, and 1-week post-bleaching. Kruskal-Wallis procedure was used to determine differences in color change. Pearson correlation was used to evaluate the relationship between visual and instrumental measurements. Tests of hypotheses were 2-sided with alpha = 0.05. Results: There was no significant difference in color parameters (L1, a1, b1, and shade guide units [SGU]) at baseline (p > 0.05). There was a significant difference among the groups for overall color change (ΔE*ab) and change in shade guide units (ΔSGU) at 1-day and 1-week post-bleaching (p < 0.05). The higher the HP concentration, the higher the color change as expressed in ΔSGU and ΔE*ab. The negative control exceeded the perceptibility threshold of ΔE* = 1.2 regardless of time point. NFs showed a decrease in chroma, but were not statistically different compared to the negative control. Conclusions: The laboratory model was successful in screening an experimental bleaching agent.

In-office dental bleaching with violet light emitting diode: bleaching efficacy and pulpal temperature rise

  • Brunna Katyuscia de Almeida Guanaes;Talyta Neves Duarte;Gisele Maria Correr;Marina da Rosa Kaizer;Carla Castiglia Gonzaga
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.7.1-7.14
    • /
    • 2022
  • Objectives: This study evaluated the bleaching efficacy of different in-office protocols associated with violet light emitting diode (V-LED), and measured the pulpal temperature rise caused by V-LED with or without gel application. Materials and Methods: Bovine incisors were distributed in 4 groups (n = 10): VL - V-LED; HP - 35% hydrogen peroxide (control); HYB - hybrid protocol, V-LED applied without gel for 10 irradiation cycles followed by V-LED applied with gel for another 10 irradiation cycles; and HPVL - gel and V-LED applied for 20 irradiation cycles. Three bleaching sessions were performed with 7-day intervals. Bleaching efficacy was evaluated with ΔEab*, ΔE00 and ΔWID. Data were recorded at baseline, 7, 14, 21 and 70 days. For pulpal temperature rise, thermocouples were placed inside the pulp chamber of human incisors. To determine intrapulpal temperature, the teeth were irradiated with V-LED with or without application of bleaching gel. Color difference data were analyzed by 2-way repeated measures ANOVA and Tukey's test. Pulpal temperature was analyzed by t-test (α = 5%). Results: VL exhibited lower color (ΔEab* and ΔE00) and whiteness changes (ΔWID) than the other groups. HPVL presented higher color change values than HYB. HYB and HPVL showed not different ΔWID values; and HP showed the highest whiteness changes at all times. There were significant differences comparing ΔT with gel (8.9℃) and without gel application (7.2℃). Conclusions: HPLV was more efficient than HYB. The 2 protocols with VL showed similar results to control. Gel application combined with VL promoted higher pulpal temperature than to the no gel group.

Effect of Reductive Bleaching on Optical Properties of Color Ledger (색지 폐지의 광학적 특성에 미치는 환원 표백의 영향)

  • 안병준;백기현
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.68-73
    • /
    • 2001
  • This experiment was executed to clarify the optimum condition of reductive bleaching for 100% color papers. The reductive bleaching of the color paper was desirable to be done under such conditions as high temperature over $60^{\circ}C$ and high consistency within possibly short time. The FAS bleaching like the sodium hydrosulfite required oxygen-free condition. Especially, as the mixture between pulps and chemicals was favored in case of the high consistency, it was actively recommended. Therefore, it is desirable to control the dosage with the type of the dyes, the nature, the dye content, the paper compositions, and the targeting initial and final brightness.

  • PDF

Lipid Peroxidation of Ginseng Thylakoid Membrane (인삼 틸라코이드 막의 지질과 산화)

  • 양덕조
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.135-141
    • /
    • 1990
  • In order to elucidate the mechanism of the leaf-burning disease of ginseng (Panax ginseng C.A. Meyer), the relationships between thylakoid membrane peroxidation and chlorophyll bleaching were investigated in comparison with the ones of soybean (Glycine max L). When I measured the rate of lipid peroxidation in the thylakoids of ginseng and soybean by irradiation of light(60 w.m-2), it was identified that, the remarkably lower rate of lipid peroxidation was found in the ginseng thylakoid than the case of soybean. When lipid peroxidation of ginseng thylakoid was induced in the dark, chlorophyll contents of thylakoid was not changed. The results suggest that lipid peroxidation does not affect the chlorophyll bleaching in ginseng thylakoid. Thylakoid membrane peroxidation as well as chlorophyll bleaching was closely related with photosynthetic electron transport. But, according to the quenching experiment active oxygen species induced lipid peroxidation may be different species in the case of chlorophyll bleaching.

  • PDF