• Title/Summary/Keyword: blasting pressure

Search Result 153, Processing Time 0.022 seconds

Optimization of Glass Wafer Dicing Process using Sand Blast (Sand Blast를 이용한 Glass Wafer 절단 가공 최적화)

  • Seo, Won;Koo, Young-Mo;Ko, Jae-Woong;Kim, Gu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.30-34
    • /
    • 2009
  • A Sand blasting technology has been used to address via and trench processing of glass wafer of optic semiconductor packaging. Manufactured sand blast that is controlled by blast nozzle and servomotor so that 8" wafer processing may be available. 10mm sq test device manufactured by Dry Film Resist (DFR) pattern process on 8" glass wafer of $500{\mu}m's$ thickness. Based on particle pressure and the wafer transfer speed, etch rate, mask erosion, and vertical trench slope have been analyzed. Perfect 500 um tooling has been performed at 0.3 MPa pressure and 100 rpm wafer speed. It is particle pressure that influence in processing depth and the transfer speed did not influence.

Studies on Drilling and Cutting Characteristics for Granite Rocks Using Waterjets (워터젯을 이용한 화강암 천공과 절삭 특성에 관한 연구)

  • Oh, Tae-Min;Hong, Eun-Soo;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1338-1345
    • /
    • 2009
  • Although rock excavation is necessary for the effective utilization of urban space, most conventional rock excavation methods, including the blasting method, cause high noise and vibration. Meanwhile, if a high pressure waterjet system is applied to excavate underground spaces in urban areas, the public grievance can be reduced by low noise and vibration. In this study, an abrasive waterjet system is designed and developed to study the influence of various performance parameters such as jet pressure, nozzle traverse speed, stand-off distance, or abrasive feed rate on waterjet excavation performance in laboratory. Using the developed waterjet system, rock drilling characteristics are identified by measuring drilling depths as a function of the jet exposure time. The drilling depth linearly increases with increasing the jet exposure time(under 60sec). Rock cutting characteristics are also obtained with various jet pressures(1600~3200kg/$cm^2$) and nozzle traverse speeds(1.9~14.1mm/s): The cutting depth is nonlinearly related to the jet pressure and traverse speed. Indeed, the cutting depth increases with an increase in the jet pressure and a decrease in the nozzle traverse speed. This trend can be explained by energy transferring/loss mechanism.

  • PDF

A Study on Effects of the Artificial Structures by the Blast Pressure Simulation (폭풍압 시뮬레이션에 의한 지형지물의 영향에 관한 연구)

  • Kang, Dae-Woo;Lee, Sin;Jung, Byung-Ho;Sim, Dong-Soo
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.17-27
    • /
    • 2010
  • With the development of modern society, there have been great technical advances, and the meaning, shape, and type of preservation objects have also become diverse. However, the legislation of executives established in 1961 has nt yet been revised realistically. Thatses administrative problems related to the usge and storage of explosives. In this study, the cases of civilian's question and thought that had been submitted to the government agency were surveyed. In order to analyze the effects of preservation object, ENPro3.1, which is a simulation program to analyze the sound pressure, was used to estimate the blast pressure when a magazine containing preservation objects exploded. With the damage due to the blast pressure, the problem with the safe distance depending on the preservation object levels was investigated. From the investigation, the blast pressures in the two cases with the artificial structures at the real distance 309 m and without the artificial structures at the legitimate standard space distance 440 m, were found to be 123 dB(L) and 138 dB(L), respectively. That means the influence of blast pressure in shorter distance with artificial structures is 15 dB(L) lower than longer distance without them. Therefore, it is recommended to apply the preservation distance based on the engineering analysis with a consideration of surrounding environment.

Determining Parameters of Dynamic Fracture Process Analysis(DFPA) Code to Simulate Radial Tensile Cracks in Limestone Blast (석회암 내 방사상 발파균열을 예측하기 위한 동적파괴과정 해석법의 입력물성 결정법에 관한 연구)

  • Kim, Hyon-Soo;Kang, Hyeong-Min;Jung, Sang-Sun;Kim, Seung-Kon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.6-13
    • /
    • 2013
  • Recently, complaints or environmental problems caused by the noise and dust generated from crusher of the mine and quarry are emerging. Therefore mining facilities such as crushers and mills have been installed in an underground. In order to facilitate crusher equipments in the underground, excavation of large space is required and then the stability of the large space underground structure is an important issue. In this study, the blast experiments, which use a block of the limestone, are performed. Based on the blast experiments, the numerical model was prepared and simulated using dynamic fracture process analysis code(DFPA) with considering the rising time of applied borehole pressure and microscopic tensile strength variation. Comparing the non-dimensional crack length and no-dimensional tensile strength obtained from blast experiments and numerical analyses, the input parameters of DFPA code for predicting a radial tensile crack in limestone blasting were determined.

Blast Modeling of Concrete Column Using PFC (PFC를 이용한 콘크리트기둥의 발파모델링)

  • Choi Byung-Hee;Yang Hyung-Sik;Ryu Chang-Ha
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • An explosion modeling technique was developed by using the spherical discrete element code, $PFC^{3D}$, which can be used to model the dynamic stress wave propagation phenomenon. The modeling technique is simply based on an idea that the explosion pressure should be applied to a $PFC^{3D}$ particle assembly not in the form of an external force (body force), but in the form of a contact force (surface force). A test blast was conducted for a RC column, whose dimension was $600\times300\times1800$ in millimeters. The initial velocities of the surface movements were measured to be in the range of $14\~18\;m/s$ with the initiation times of $1.5\~2.0m$. Then the blasting procedure was simulated by using the modeling technique. The particle assembly representing the concrete was made of cement mortar and coarse aggregates, whose mirco-properties were obtained from the calibration processes. As a result, the modeling technique developed in this study made it possible for the burden to move with the velocity of $17\~24\;m/s$, which are slightly higher values compared to those of the test blast.

A study on improving the surface morphology of recycled wafer forsolar cells using micro_blaster (Micro blaster를 이용한 태양전지용 재생웨이퍼의 표면 개선에 관한 연구)

  • Lee, Youn-Ho;Jo, Jun-Hwan;Kim, Sang-Won;Kong, Dae-Young;Seo, Chang-Taeg;Cho, Chan-Seob;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.291-296
    • /
    • 2010
  • Recently, recycling method of waste wafer has been an area of solar cell to cut costs. Micro_blasting is one of the promising candidates for recycling of waste wafer due to their extremely simple and cost-effective process. In this paper, we attempt to explore the effect of micro_blasting and DRE(damage removal etching) process for solar cell. The optimal process conditions of micro_blasting are as follows: $10{\mu}m$ sized $Al_2O_3$ powder, jetting pressure of 400 kPa, and scan_speed of 30 cm/s. And the particles formed on micro_blasted wafer were removed by DRE precess which was performed by using HNA(HF/$HNO_3$/$CH_3COOH$) and TMAH(tetramethyl ammonium hydroxide). Structural analysis was done using a-step and the XRD patterns.

Superhydrophobic Surfaces for condensation by using spray coating method

  • Oh, Seungtae;Seo, Donghyun;Lee, Choongyeop;Nam, Youngsuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.157.2-157.2
    • /
    • 2016
  • Water repellent surfaces may enhance the condensation by efficiently removing the condensed droplets. However, such surfaces may lose their original performance as they are exposed to external mechanical stresses. In this work, we fabricated spray-coated mechanically robust superhydrophobic surfaces using treated titanium dioxide (Type 1) or silica particles (Type 2). Then we compared the mechanical robustness of such surfaces with the silane-coated superhydrophobic surface and PEEK coated surface using a controlled-sand blasting method. The results show that the spray-coated samples can maintain the same level of the contact angle hysteresis than silane-coated superhydorphobic surface after sand blasting at 2 bar. The spray-coating method was applied to the tube type condenser and the condensation behaviors were observed within the environmental chamber with controlled pressure, humidity and non-condensable gas. Previously-reported droplet jumping was observed in the early stage of the condensation event, but soon the droplet jumping stopped and only dropwise condensation was observed since the condensed droplets were pinned on the cracks at spray-coated surfaces. The static contact angle decreases from $158.0^{\circ}$ to $133.2^{\circ}$, and hysteresis increases from $3.0^{\circ}$ to $23.5^{\circ}$ when active condensation occurs on such surfaces. This work suggests the benefits and limitation of spray-coated superhydrophobic condensers and help develop advanced condensers for practical use.

  • PDF

Determination of Blast Load on the Boreholes Wall Using Decoupled Charge (Decoupling 장전시 천공벽에 작용하는 발파하중의 산정)

  • Kim, Sang-Gyun;Lee, In-Mo;Choi, Jong-Won;Kim, Shin;Lee, Du-Wha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.209-216
    • /
    • 1999
  • In tunneling and road cuts by blasting, it is of the utmost importance that the remaining rock is of high quality in order to avoid rockfall, rockslides and excessive maintenance work. Therefore, numerous blasting techniques which make use of decoupled charge or shock wave superposition effect have been used to control overbrake. In this paper. some approximate method for the determination of blast load according to the charge condition was introduced at first and, instrumented tests were conducted in small scale transparent material to investigate the shape and amplitude of blast load around the bore hole. Compare to the fully coupled charge, low amplitude of blast load around the bore hole was observed in the decoupled charge and explosion gas pressure was important in the shape of blast load. Therefore, quasi-static behaviour of the crack pattern was shown due to low loading rate.

  • PDF

A Study on the Deep Kerfing Technique in Rock Using High Pressure Water Jet (워터젯을 이용한 암석의 슬롯절삭에 관한 연구)

  • 최병희;양형식
    • Explosives and Blasting
    • /
    • v.19 no.3
    • /
    • pp.105-113
    • /
    • 2001
  • 채석, 굴착, 가공과 같은 워터젯 응용분야에서 대상재료에 깊은 홈(kerf)을 절단할 수 있는 실험실용 회전식 슬로터(slotter)를 제작하여 암석을 대상으로 워터젯 시스템의 절단효율을 시험하였다. 고압펌프는 유율 7.5 l/min, 압력 379 MPa, 용량 75 kW급의 JETPAC을 주로 사용하였고, 암석시료는 화강석인 제천석, 거창석을 사용하였다. 시험과정에서는 물과 연마재 투입에 의한 절단 및 진동식 슬로터에 의한 슬롯절단 기초시험을 먼저 수행하고, 그 결과를 토대로 회전식 슬로터에 의한 절단시험을 실시하였다. 순수한 물에 의한 시험의 결과 고압수류의 토출압력은 절단심도에 정비례하였고, 노즐의 이송속도는 이차함수 형태의 반비례 관계를 보였다. 연마재 투입시험에서는 순수한 물에 의한 경우에 비해 연마재로 인한 충격력의 증가로 절단심도가 크게 증가하였는데, 유사한 조건하에서 3~5배 이상의 절단심도의 증가를 보였다. 진동식 슬로터에 의한 슬롯절삭에서는 생성된 슬롯의 내벽면이 바닥으로 갈수록 좁아짐으로써 넓은 폭의 슬롯형성은 가능하나 절삭심도가 제한되었다. 회전식 슬로터에 의한 시험에서 생성된 슬롯들은 평균 22 mm의 폭으로 내벽면이 바닥까지 서로 평행하여 깊은 심도까지 비트진입이 가능하였다. 절단율은 16~32 mm/sec의 속도범위에서 $40~160{\;}\textrm{mm}^2/sec$로 나타났다. 한편, 최대유율 24 l/min의 HUSKY S-200 펌프에 의한 시험결과 JETPAC 펌프에 비해 1.13~3.47 배의 절단심도를 보였다

  • PDF

A Study on the Establishment of Management Criteria for Underwater Noise (수중소음 관리 기준 설정을 위한 소고)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Jun, Yang-Bae
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.119-132
    • /
    • 2010
  • There are many dispute with a construction due to such environment problem as vibration and noise. Generally, we have a standard for acceptance level in land. But we have not a sufficient standard for acceptance level or guide line in underwater sound. In other countries, a acceptance level or guide line in underwater sound has been suggested. Especially the management criterion of underwater noise for fish has bee suggested using the measurement data (peak pressure, rms, energy and SEL) by a hydrophone. In Korea, there is no management criterion of underwater noise for fish. This study suggested the management criteria of underwater noise for fish based on the measured data by a hydrophone.