• Title/Summary/Keyword: blasting excavation

Search Result 205, Processing Time 0.023 seconds

Application of seismic reflection method in the tunnel of Youngdong railroad (Mt. Dongbaek~Dokye) (영동선 동백산-도계간 터널내 반사법 탄성파탐사 적용사례)

  • Kim, Yong-Il;Cho, Sang-Kook;Yang, Jong-Hwa;Kim, Jang-Soo;Lee, Nai-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.89-100
    • /
    • 2003
  • Seismic Reflection Methods (TSP, HSP) have been applied in the junction between 2nd Adit and Main Tunnel (Solan Tunnel) of Youngdiong Railroad (Mt. Dongbaek~Dokye). In this paper, methods and case study will be introduced to predict discontinuties in the tunnel before excavation by the Seismic Reflection Methods (TSP, HSP)and secure construction stability of the tunnel in blasting and excavation.

  • PDF

Optimum Support Pattern Design of the Tae-Gu Subway Tunnel (대구 지하철 터널의 적정지보패턴 선정에 관한 연구)

  • 지왕률;최재진
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.119-131
    • /
    • 1994
  • This is a Double-Track Railway tunnel in typical Tae-Gu black and gray shale forming part of the No.1 Line of the Tae-Gu Subway. The main fault zone at tunnel is a moderately to highly weathered and closely jointed zone, 0.5 m wide with associated paralled jointing which is slickensided and fractured. After excavation by blasting, the soft rocks should need to be reinforced with optimal supporting pattern which might be better redesigned through the consideration of the results of in-situ rock measurements at the field. Performances fo the field tests included Point Load Test, Schmidt Hammer Test, and field joint measurement gave the detail data for the optimum support design and safe excavation of the No.1 Line of Tae-Gu Subway at the No.1-7 consturction site adn the safety of this redesigned supports system was analysed by the FDM program FLAC.

  • PDF

A Study on Stability Analysis of Large Underground Limestone Openings considering Excavation Damaged Zone (굴착손상영역을 고려한 대형 석회석 갱내채광장의 안정성 분석 연구)

  • Kwon, Min-Hyuk;Choi, Sung-Oong;Kim, Chang-Oh
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.131-142
    • /
    • 2016
  • Investigation for rock joints, inspection for rock core, and laboratory tests for rock specimens, in this study, have been performed for identification of the extent and properties of Excavation Damaged Zone in a underground limestone mine, which plans to enlarge the size of openings to improve the production rate. Properties of EDZ and surrounding rock masses have been used numerically for discontinuum analysis, and it is concluded that the effect of EDZ can be increased with increasing the opening size and a blasting pattern of high precision can be suggested for the counterplan.

Stability Analysis for Two Arch Excavation of a Tunnel Portal (터널 갱구 2 Arch 굴착에 따른 안정성 해석)

  • 이길재;유광호;박연준;채영수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.179-188
    • /
    • 2002
  • This study is to understand the effect of the vibration and the stress changes due to the excavation of 2 arch parts of a tunnel, which is a Gyungbu Express Railway tunnel, on the tunnel itself and adjacent slopes in advance, and to analyze the stability. For the estimation of ground conditions, borehole tests, borehole camera logging and seismic logging were performed. Ground properties at a specific location were determined as input constants by performing 2 dimensional analyses with possible ranges of uncertain ground properties. Static and pseudo-static (due to blasting vibration) factors of safety were calculated. The behavior of the tunnel and its vicinity due to the tunnel excavation were predicted by 3 dimensional analyses. It was also tested whether the support system was proper.

Studies on Drilling and Cutting Characteristics for Granite Rocks Using Waterjets (워터젯을 이용한 화강암 천공과 절삭 특성에 관한 연구)

  • Oh, Tae-Min;Hong, Eun-Soo;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1338-1345
    • /
    • 2009
  • Although rock excavation is necessary for the effective utilization of urban space, most conventional rock excavation methods, including the blasting method, cause high noise and vibration. Meanwhile, if a high pressure waterjet system is applied to excavate underground spaces in urban areas, the public grievance can be reduced by low noise and vibration. In this study, an abrasive waterjet system is designed and developed to study the influence of various performance parameters such as jet pressure, nozzle traverse speed, stand-off distance, or abrasive feed rate on waterjet excavation performance in laboratory. Using the developed waterjet system, rock drilling characteristics are identified by measuring drilling depths as a function of the jet exposure time. The drilling depth linearly increases with increasing the jet exposure time(under 60sec). Rock cutting characteristics are also obtained with various jet pressures(1600~3200kg/$cm^2$) and nozzle traverse speeds(1.9~14.1mm/s): The cutting depth is nonlinearly related to the jet pressure and traverse speed. Indeed, the cutting depth increases with an increase in the jet pressure and a decrease in the nozzle traverse speed. This trend can be explained by energy transferring/loss mechanism.

  • PDF

Study on Applicability of Asymmetry V-Cut method in Underground Mine (비대칭 V-cut의 갱내 광산에 대한 적용성 연구)

  • Kim, Jung-Gyu;Jung, Seung-Won;Kim, Jun-Ha;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.520-533
    • /
    • 2021
  • It is necessary to increase the blasting efficiency in order to minimize the economic loss caused when the excavation cross section is reduced due to the stability problem of underground mining development, and for this, a new blasting design is proposed. In this study, the blasting efficiency of the general design in the field, the suggestion designI, which added two columns to production blasting, and the suggestion design II, which added one column to create asymmetry, is compared. Advance rate and fragmentation were selected as the evaluation index of the blasting efficiency. In the case of advance rate, compared to the normal, the suggestionI improved by 6.07% and the suggestionII improved by 4.65%. In the case of fragmentation, based on P80, compared to the normal, the suggestionI reduced about 58% and the suggestionII was about 47%. Accoording to the evaluation index, the suggestion designI shows better blasting efficiency than the suggestion designII. But considering the additional work time and cost required for the suggestion designI due to the insignificant difference in the evaluation index results, the asymmetry V-cut, the suggestion designII, is judged to be a more suitable blasting design for the site.

Full-Scale Blasting Experiment and Field Verification Research Using Shock-Reactive Smart Fluid Stemming Materials (고속충격 반응형 스마트유체 전색재료를 적용한 실 규모 발파실험 및 현장실증 연구)

  • Younghun, Ko;Seunghwan, Seo;Youngjun, Jeong;Sanglim, Noh;Sangho, Cho;Moonkyung, Chung
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • Stemming is a process applied to blast holes to prevent gases from escaping during detonation. A stemming material helps confine the explosive energy for longer and increases rock fragmentation. This study developed a stemming material based on a shear-thickening fluid (STF) that reacts to dynamic shock. Two blasting experiments were conducted to Field-verify the performance of the STF-based stemming material. In the first experiment, the pressure inside the blast hole was directly measured based on applying the stemming material. In the second field verification, tunnel blasting was performed, and the blasting results of sand stemming and, that of the STF-based stemming case were compared. The measurement results of the pressure in the blast hole showed that when the STF-based stemming material was applied, the pressure at the top of the blast hole was lower than in the sand stemming case, and the stemming ejection was also lower. The results of the field application verify that the excavation performance of the STF-based stemming case in the tunnel blasting was superior to that of the sand stemming case.

System Analysis of Dust Concentration at the Field of Tunnel Excavation (터널 굴착시 작업현장의 분진농도 실태조사)

  • Park, Jong-Soon;An, Dae-Hyun;Shim, Myeong-Jin;Jung, Ji-Seung;You, Jin-O;Um, Myeong-Heon;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.126-129
    • /
    • 2007
  • In order to ruduce traffic-jam, it is requested to extend road. As a result, the construction of tunnels is inevitable considering our mountatinous topography. In tunnel construction work, major contamination materials occur from rock drilling, blasting rock, rock transporting, and short-creat. After rock blasting, a very high concentration of particles over $5000{\mu}g/m^3$ is maintained for 4 h when air is supplied by pans, by which the construction work has to be delayed at least 30 min. Although dry dust collectors are used, the effective operation time span is limited to 3 h. In this work, the behavior of particles in air and use of particle removal instruments are investigated. As a result, it was important to compare efficiencies of dry and hydro dust collectors.

A Study on Development of Shotcrete Material using Fly Ash (Fly Ash을 이용한 Shotcrete 재료의 개발에 관한 연구)

  • 한오형;강추원
    • Explosives and Blasting
    • /
    • v.21 no.2
    • /
    • pp.21-30
    • /
    • 2003
  • Currently, the shotcrete used as basic support in the tunnel excavation, has the advantages of maintaining high-level strength in condition of early shooting with thin thickness based on the excavation characteristics of rock mass. Therefore supreme equipment and materials were developed and the great strides have continued. Also, the development of measurement technology and the rocks behaviors of undergound are evaluated in detail and the designs of strength and thickness are made. The reinforcement materials development of new material is carried on. Most of the coal fly ash produced in Korea fire power plant is fly ash and bottom mash. Fly ash has been producing to be applied in many fields such as cement, aggregate, construction, civil, agriculture and fisheries. Also a lot of experiments are actively on the way. Therefore in this experiment, in order to use the fly ash mixed with concrete as a material of shotcrete, the experiment was performed in the best content to reduce the compression strength and the shooting rebound ratio of the excavated surface to use fly ash as a substitute material of concrete. As a result, when 15%.wt substitution was made to the fly ash, about 10% of compression strength and 6% of rebound ratio was reduced.

A Study to Determine the Degree of Difficulties with the Excavation of Corestone Weathering Profiles (핵석지반에서의 굴착난이도 평가방법 연구)

  • Lee, Su-Gon;Lee, Byok-Kyu;Kim, Min-Sung
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.89-99
    • /
    • 2007
  • This paper intends to introduce more objective and qualitative rock mass classification method easily applicable to the excavation of gneissic masses showing corestone weathering profiles. It is proven that corestone weathering profile could be divided with reasonable accuracy into digging, ripping and blasting layers using visual and simple mechanical techniques such as Schmidt hammer rebound test on cut slopes, taking into consideration strength and spacial distribution of corestone, workability and work efficiency of excavation. Also, seismic refraction surveys were employed for shallow investigations (down to $20{\sim}30m$ depth) in corestone weathering profile and conducted across the top of vertical exposures where the underlying geology could be directly inspected. Some discrepancies ($3{\sim}4m$ in average and 6 m occasionally) between the actual and assumed materials with respect to seismic velocities were observed. Thus it can be concluded that field geotechnical mapping and field seismic test should be used together in order to get a relatively good accuracy in assessing likely excavation conditions of corestone weather-ing profiles.