• Title/Summary/Keyword: blast p

Search Result 322, Processing Time 0.029 seconds

A Study on the Basic Properties of Polymer Cement Mortar Using SBR Latex with Blast-Furnace and Fly Ash (폴리머 디스퍼전 SBR과 고로슬래그 미분말 및 플라이애시를 사용한 폴리머 시멘트 모르타르의 기초적 성질에 관한 연구)

  • Kim, Wan-Ki;Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • The purpose of this study is to evaluate the improvement of flow, compressive and flexural strengths of polymer cement mortar(PCM) using SBR latex mixed with blast-furnace slag and fly ash. The test specimens were prepared with SBR polymer dispersion, two types of admixture (blast-furnace slag and fly ash), five polymer-cement ratios (P/C; 0, 5, 10, 15 and 20%), and six admixture contents (0, 3, 5, 10, 15 and 20%), plain cement mortar was also made for comparison. From the test results, the flow of PCM was significantly improved compared to ordinary cement mortar, but the flow was slightly reduced when mixed with blast-furnace slag, and the flow was similar to PCM when mixed with fly ash. In addition, the compressive strength of PCM mixed with admixtures was significantly improved, but the flexural strength did not improve except for some mortars. It can be stated that the optimum mix proportions of PCM using SBR with admixture contents 10 to 15% and P/C 10% for the compressive strength improvement, and P/C 20% for flexural strength improvement are recommended respectively in this study.

Blast Furnace Slag as Media for an Anaerobic Fixed-Film Process (고로(高爐) 슬래그를 이용한 혐기성(嫌氣性) 생물막(生物膜) 공법(工法)에 관한 연구(硏究))

  • Choi, Eui So
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.135-141
    • /
    • 1989
  • Blast furnace slag presents coarse surface for microbes to grow on and high calcium and magnesium contents to neutralize acid to be produced during anaerobic digestion. Also, slag contains aluminum and iron oxides which would promote biological flocculation, and minerals which would stimulate microbial growth. Acid wastes like dairy waste, carbohydrate waste, sanitary landfill leachate and molases wastes were applied without neutralization to laboratory reactors to examine the applicability of blast furnace slag as media. The study results indicated slag media was effective to neutralize pH and maintain microbial population in the system. Particularly, COD removal efficiency was greater than those from plastic media operations treating dairy waste at higher loading rates.

  • PDF

Anlaysis of Eukaryotic Sequence Pattern using GenScan (GenScan을 이용한 진핵생물의 서열 패턴 분석)

  • Jung, Yong-Gyu;Lim, I-Suel;Cha, Byung-Heun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.113-118
    • /
    • 2011
  • Sequence homology analysis in the substances in the phenomenon of life is to create database by sorting and indexing and to demonstrate the usefulness of informatics. In this paper, Markov models are used in GenScan program to convert the pattern of complex eukaryotic protein sequences. It becomes impossible to navigate the minimum distance, complexity increases exponentially as the exact calculation. It is used scorecard in amino acid substitutions between similar amino acid substitutions to have a differential effect score, and is applied the Markov models sophisticated concealment of the transition probability model. As providing superior method to translate sequences homologous sequences in analysis using blast p, Markov models. is secreted protein structure of sequence translations.

Alteration of Gas Exchange in Rice Leaves Infected with Magnaporthe grisea

  • Yun, Sung-Chul;Kim, Pan-Gi;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.257-263
    • /
    • 2000
  • Infection with rice blast fungus (Magnaporthe grisea) significantly reduced foliar net photosynthesis (A) of rice cultivars: Ilpoom, Hwasung, and Choochung in greenhouse experiments. By measuring the amount of diseased leaf area with a computer image analysis system, the relation between disease severity (DS) and net photosynthetic rate was curvilinearly correlated (r=0.679). Diseased leaves with 35% blast symptom can be predicted to have a 50% reduction of photosynthesis. The disease severity was linearly correlated (r=0.478) with total chlorophyll (chlorophyll a and chlorophyll b) per unit leaf area(TC). Light use efficiency was reduced by the fungal infection according to the light response curves. However, dark respiration (Rd) did not change after the fungal infection (p=0.526). Since the percent of reduction in photosynthesis greatly exceeded the percent of leaf area covered by blast lesions, loss of photosynthetic tissue on an area basis could not by itself account for the reduced photosynthesis. Quantitative photosynthetic reduction can be partially explained by decreasing TC, but cannot be explained by decreasing Rd. By photosynthesis (A)-internal CO$_2$ concentration (C$_i$ curve analysis, it was suggested that the fungal infection reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, ribulose-1,5-bisphosphate (RuBP) regeneration, and inorganic phosphate regeneration. Thus, the reduction of photosynthesis by blast infection was associated with decreased TC and biochemical capacity, which comprises all carbon metabolism after CO$_2$ enters through the stomata.

  • PDF

Leaching Characteristics on Arsenic Contaminated Soils after Stabilization Treatment (안정화 처리된 비소오염토양의 용출특성)

  • Yu, Chan;Park, Jin-Chul;Yoon, Sung-Wook;Baek, Seungh-Wan;Lee, Jung-Hun;Lim, Young-Cheol;Choi, Seung-Jin;Jang, Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.920-925
    • /
    • 2008
  • In this presentation, a leaching experiment which is followed the pH changes(pH=4, pH=7) and the mixing rates(1%, 3%, 5%, 7%) was carried out to examine the arsenic reduction effects and the leaching characteristics on arsenic contaminated soil after stabilization treatment in which 5 materials were used as stabilization agencies, i.e. ZVI(zero valent iron), blast furnace slag, steel refining slag, quick lime, and oyster shell meal. Except for blast furnace slag, the arsenic removal rate increased as the mixing rate increases of stabilization agencies. Arsenic leaching concentration was indicated that pH=7 condition is higher than pH=4 condition. This result shows because arsenic immobilization reaction increases as pH decreases, and arsenic adsorption takes place as pH decreases.

  • PDF

A Study on Cementation of Sand Using Blast Furnace Slag and Extreme Microorganism (고로슬래그와 극한미생물을 이용한 모래의 고결화 연구)

  • Park, Sung-Sik;Choi, Sun-Gyu;Nam, In-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2014
  • In this study, a blast furnace slag having latent hydraulic property with an alkaline activator for resource recycling was used to solidify sand without using cement. Existing chemical alkaline activators such as $Ca(OH)_2$ and NaOH were used for cementing soils. An alkaliphilic microorganism, which is active at higher than pH 10, is tested for a new alkaline activator. The alkaliphilic microorganism was added into sand with a blast furnace slag and a chemical alkaline activator. This is called the microorganism alkaline activator. Four different ratios of blast furnace slag (4, 8, 12, 16%) and two different chemical alkaline activators ($Ca(OH)_2$ and NaOH) were used for preparing cemented specimens with or without the alkaliphilic microorganism. The specimens were air-cured for 7 days and then tested for the experiment of unconfined compressive strength (UCS). Experimental results showed that as a blast furnace slag increased, the water content and dry density increased. The UCS of a specimen increased from 178 kPa to 2,435 kPa. The UCS of a specimen mixed with $Ca(OH)_2$ was 5-54% greater than that with NaOH. When the microorganism was added into the specimen, the UCS of a specimen with $Ca(OH)_2$ decreased by 11-60% but one with NaOH increased by 19-121%. The C-S-H hydrates were found in the cemented specimens, and their amounts increased as the amount of blast furnace slag increased through SEM analysis.

Numerical Model to Evaluate Resistance against Direct Shear Failure and Bending Failure of Reinforced Concrete Members Subjected to Blast Loading (폭발하중을 받는 철근콘크리트 부재의 직접전단 파괴 및 휨 파괴 저항성능 평가를 위한 수치해석 모델 개발)

  • Ju, Seok Jun;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.393-401
    • /
    • 2021
  • In this paper, we proposed a numerical model based on moment-curvature, to evaluate the resistance of reinforced concrete (RC) members subjected to blast loading. To consider the direct shear failure mode, we introduced a dimensionless spring element based on the empirical direct shear stress-slip relation. Based on the dynamic increase factor equations for materials, new dynamic increase factor equations were constructed in terms of the curvature rate for the section which could be directly applied to the moment-curvature relation. Additionally, equivalent bending stiffness was introduced in the plastic hinge region to consider the effect of bond-slip. To verify the validity of the proposed model, a comparative study was conducted against the experimental results, and the superiority of this numerical model was confirmed through comparison with the analytical results of the single-degree of freedom model. Pressure-impulse (P-I) diagrams were produced to evaluate the resistance of members against bending failure and direct shear failure, and additional parametric studies were conducted.

A Study on the Evaluation of the Water-soluble Chloride Content and Free-chloride Content in Blast Furnace Slag Cement Pastes (고로 슬래그 시멘트 페이스트 내 자유염화물량과 물가용성 염화물량 평가에 관한 연구)

  • Jo, Young-Kug;So, Seung-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.95-101
    • /
    • 2004
  • The purpose of this paper is to compare free-chloride content with water-soluble chloride in blast furnace cement(BSC) paste. The content of free-chloride in cement paste measured by pore solution analysis and water-soluble chloride measured by ASTM. The result of this study are as follows: 1. The concentration of chloride ion in pore solution of BSC-solidified matrix is almost as low as 43-71% compared to that of OPC-solidified matrix containing the same chloride content in cement paste. 2. The binding capacity of specimens, OPC Pl-P5, are 93.5-77%, but the binding capacity of specimens, BSC Pl-P5 are 97.1-86.1%, which is to be as high as 2-9.1% compared to OPC containing the same chloride content. 3. In terms of water-soluble chloride content in BSC paste are 15-31.7 percent of chloride addition but free-chloride content in pore solution are 2.9-13.9 percent of chloride addition. The free-chloride content in pore solution is 19.3-43.8 percent lower for the water-soluble chloride content in cement paste.