• Title/Summary/Keyword: blast experiment

Search Result 272, Processing Time 0.027 seconds

Effect of Various Partial Replacements of Cement with Blast Furnace Slag and Different Placing Times on Thermal Properties of Mass Concrete and Modeling Work (타설시간차에 의한 고로슬래그 미분말의 치환율별 매스콘크리트의 온도특성)

  • Kim, Jong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.207-215
    • /
    • 2019
  • The aim of the research is analyzing the simple adiabatic temperature rising properties and the heat of hydration based on different placing timing of the mass concrete depending on various replacing ratios of blast furnace slag to comparative analyze the thermal cracking index and cracking possibility. As a result from the experiment, a suggested adiabatic temperature rising equation based on various blast furnace slag replacing ratios can be provide favorable correlation with over 0.99 of $R^2$ value by applying the initial induction period. With this relationship, more accurate prediction of the amount of the hydration heat rising and heating timing, and it is known that there is an approximately $13.1^{\circ}C$ of gap between plain concrete without blast furnace slag and concrete with 80 % of replacing blast furnace slag. To control the setting time and heat rising gap, the mix designs between top and bottom concrete casts were changed 15 cases, and D, E, H, I, and L models of controlling the heat of hydration showed 41.23 to $46.88^{\circ}C$ of core temperature and 0.98 to 1.27 of thermal cracking index. Therefore the cracking possibility was 15 to 52 % of favorable results of possibly controlling both the cracking due to the internal and external retainment and concrete temperature at early age.

A Study on the Strength Property of Recycled Fine Aggregate (Wet Type) Mortar with Blast Furnace Slag (고로슬래그를 사용한 습식 순환 잔골재 모르타르의 강도 특성에 관한 연구)

  • Shim, Jong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.153-160
    • /
    • 2010
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. The recycled aggregate includes the cement paste hardened as the surface and the type of the aggregate, which contains plenty of calcium hydroxide($Ca(OH)_2$) as well as the unhydrated cement. Accordingly, the objectives of this study are to inspect the manufacturing the recycled fine aggregate mortar used with blast furnace slag, to consider the effects of the recycled aggregate on the strength development of ground granulated blast furnace slag, and then to acquire the technical data to take into consideration the further usages of the recycled aggregate and blast furnace slag. In eluted ions from recycled aggregate, it showed that there were natrium($Na^+$) and kalium($K^+$), expected to be flown out of unhydrated cement, as well as calcium hydroxide($Ca(OH)_2$). Application of this water to mix cement mortar with ground granulated blast furnace slag was observed to expedite hydration as calcium hydroxide($Ca(OH)_2$) and unhydrated cement component were expressed to give stimuli effects on ground granulated blast furnace slag. The results of the experiment show that the recycled aggregate mixed with blast furnace slag has comparatively higher hydration activity in 7 day than the mortar not mixed with one in 3 day mortar does, causing the calcium hydroxide in the recycled fine aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag.

The physical properties evaluation and analysis about color revelation of the black-color mortar which applies the Granulated Blast Furnace Slag (고로(高爐)슬래그 미분말(微粉末)을 활용(活用)한 블랙-컬러모르타르 특성(特性) 및 색상발현(色相發現)에 관한 연구(硏究))

  • Kim, Seol-Hwa;Jang, Hong-Seok;So, Seung-Young
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.86-92
    • /
    • 2010
  • In the many kind of construct-material, the concrete which has the high-strength and a durability is sufficient to use with structure-material. but the color of concrete is very monotony, so generally concrete isn't used the out surface. although color concrete is a method of expressing surface, the combination of pigment and cement cause many physical problem such as efflorescence phenomenon, strength degradation and so on. In this study, It attempt to develop the black mortar using the industrial granulated blast furnace slag and to evaluate basic physical properties compare with general color concrete to solve the color concrete problem. The result of experiment showed that the flow dropped mixing of pigment. but flow increased in proportion to the mixing rate in occasion of mortar that mix granulated blast furnace sla and black mortar which was made granulated blast furnace slag has more visible black color than any mortar.

An Experimental Study on Manufacturing Permeable Concrete Blocks from Recycled Industrial By-Products of Oyster Shell and Blast Furnace Slag (굴패각 및 고로슬래그 산업부산물을 재활용한 콘크리트 투수블록의 제조에 대한 실험적 연구)

  • Seok-Hong Eo;Won-Seok Huh;Sang-Hoon Ha;Chang-Ryeol Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1135-1144
    • /
    • 2023
  • In this paper, bending strength and permeability tests were conducted on concrete permeable blocks manufactured by recycling industrial by-products of oyster shell and blast furnace slag to measure and compare bending strength and permeability coefficient, and present experimental research results. To this end, a total of 54 specimens with a size of 200x200x60mm for surface layer and base layer were manufactured, and bending strength and permeability test were carried ourt accoridng to KS F 4419. Eighteen types of mixing designs were implemented by varying the mixing and replacement rates of oyster shells and blast furnace slag. As a result of the experiment, the higher the mixing ratio of oyster shell, the lower the bending strength and the permeability coefficient. Thereafter, a total of three permeable blocks with dimensions of 200x200x60mm were manufactured and subjected to bending strength and permeability tests according to KS F 4419. As a result of the test, the bending strength satisfies the standard of KS F 4419, and the permeability coefficient is 12 times higher than the standard of KS F 4419. It seems that the proper mixing of oyster shells and blast furnace slag increases the amount of air, and further research on durability and economic feasibility of materials used to manufacture permeable blocks is required.

Strength Property of Ternary System Non-Cement Matrix according to the Curing Method (3성분계 무시멘트 경화체의 양생방법에 따른 강도특성)

  • Lee, Jin-Woo;Lee, Sang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.4
    • /
    • pp.389-396
    • /
    • 2014
  • This study was conducted as the basic research for the replacement of Blast Furnace Slag, Red Mud, Silica Fume, etc., with cement as a solution to the problems arising from the global warming caused by the generation of $CO_2$, and conducted the experimental review to examine the feasibility of matrix having properties identical to those of cement by using the Blast Furnace slag, Red mud, Silica fume, and alkali-activator. For this, by using the the inorganic binder, such as Blast Furnace Slag, Red Mud, Silica Fume, etc., and NaOH, $Na_2SiO_3$ and others as the cement substitute material, the strength characteristic according to the mixture time variation was performed in the tentative experiment. Based on the preceding experiment, this study performed the experiment to analyze the strength properties of hardener through the curing by air-dry temperature, curing by temperature in water, coating curing, and Korean paper curing. For the water curing at $80^{\circ}C$, the compressive strength and flexural strength were found to be the most excellent at the age of the 28th day, and furthermore, it was found that the non-cement hardener could be made, which is considered to affect the production of eco-friendly concrete.

The Study on Blast Effects of Stemming Materials by Trauzl Lead Block Test and High Speed 3D-DIC Systems (트라우즐 연주시험 및 고속 3차원 이미지영상상관 기법을 이용한 전색재 별 발파효과에 대한 연구)

  • Ko, Younghun;Seo, Seunghwan;Kim, Sik;Chung, Youngjun;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.13-25
    • /
    • 2021
  • The most widely used method for determining the blast effects of explosives is the Trauzl test. This test is used to measure the explosive power (strength) of a substance by determining volume increase, which is produced by the detonation of a tested explosive charge in the cavity of a lead block with defined quality and size. In this paper, Trauzl lead block test and High speed 3D-DIC (Digital Image Correlation) system were conducted to evaluate the stemming effect of the blast hole. The effects of stemming materials can be expressed as the expansion of the cavity in a standard lead block through explosion of the explosives. The blasting experiment was conducted with emulsion explosives. The stemming material in the blast hole of lead block, which was adopted in this study, were using sand and stone chips. Results of blasting experiment and numerical analysis showed that the expansion rates of lead block were most affected by stone chips followed by sand. Also, as result of dynamic strain measurement on the lead block surface of High speed 3D-DIC system, the displacement and surface strain on the block were the highest in the experiment case of stone chips stemming.

Full-Scale Blasting Experiment and Field Verification Research Using Shock-Reactive Smart Fluid Stemming Materials (고속충격 반응형 스마트유체 전색재료를 적용한 실 규모 발파실험 및 현장실증 연구)

  • Younghun, Ko;Seunghwan, Seo;Youngjun, Jeong;Sanglim, Noh;Sangho, Cho;Moonkyung, Chung
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • Stemming is a process applied to blast holes to prevent gases from escaping during detonation. A stemming material helps confine the explosive energy for longer and increases rock fragmentation. This study developed a stemming material based on a shear-thickening fluid (STF) that reacts to dynamic shock. Two blasting experiments were conducted to Field-verify the performance of the STF-based stemming material. In the first experiment, the pressure inside the blast hole was directly measured based on applying the stemming material. In the second field verification, tunnel blasting was performed, and the blasting results of sand stemming and, that of the STF-based stemming case were compared. The measurement results of the pressure in the blast hole showed that when the STF-based stemming material was applied, the pressure at the top of the blast hole was lower than in the sand stemming case, and the stemming ejection was also lower. The results of the field application verify that the excavation performance of the STF-based stemming case in the tunnel blasting was superior to that of the sand stemming case.

Mechanism on Suppression of Alkali Silica Reaction by Ground Granulated Blast-Furnace Slag in NaCl Solution (NaCl 수용액 중에서 고로슬래그미분말의 알칼리실리카반응에 대한 팽창억제 메카니즘)

  • 김창길;삼포상;강원호
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 1997
  • This study deals with the suppressing characteristics of alkali-silica reaction by ground granulated blast-furnace slag(GGBS) in NaCl solution. NaCl contents used in the experiment ranges over 0%, 2.8% and 20%. Reactive aggregate used is Japanese andesite. Also, three GGBSs of about 4.000. 6, 000 and $8, 000cm^2/g$ were used in the experiment. The replacement proportions of portland cement by GGBSs were 40%. 60%, 70% and 80%. respectively. The specimens with GGBS were severely contracted according to the increasing replacement ratio in NaCl solution. The contraction rate increases according to the increasing in NaCl content. Also. it does with increasing the blaine fineness of GGRS. It is concluded that the suppression of alkali-silica reaction by GGBS in NaCl solution is complished by contraction of GGBS due to chloride ion induced chemical shrinkage.

Experimental Study to Improve the Performance of the Pretensioner for a Passenger Vehicle (자동차용 프리텐셔너의 성능향상을 위한 실험적 연구)

  • Jung, Sung-Pil;Park, Tae-Won;Song, Taeck-Rim
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • This study presents the practical design modification to improve the retracting performance of the pyro-typed high power pretensioner. 3 components of the pretensioner are redesigned and the usefulness of the design modification is verified by the experiment. During the pretensioning process, the gas blast generated from the gunpowder is transferred to the rack-pinion gear through the manifold. The rack-pinion gear is connected with the spool where the webbing is rolled up. According to the rotation of the pinion, the spool is turned and the webbing is winded. To help the gas blast flow well, the shape of the inner cross section of the manifold is changed. The spur gear design program is developed and used to find the best combination of the rack-pinion gear pair to increase the power transmission efficiency. The pinion guide is installed on the spool to prevent the vibration of the pinion. As a result of the experiment, the amount of the web retraction length is increased when every single design modification is applied. Therefore, the retracting performance of the pretensioner is considered to be improved if the presented design modifications are applied.