• 제목/요약/키워드: blast analysis

검색결과 976건 처리시간 0.033초

Structural Response of Offshore Plants to Risk-Based Blast Load

  • Heo, YeongAe
    • Architectural research
    • /
    • 제15권3호
    • /
    • pp.151-158
    • /
    • 2013
  • Offshore oil and gas process plants are exposed to hazardous accidents such as explosion and fire, so that the structural components should resist such accidental loads. Given the possibilities of thousands of different scenarios for the occurrence of an accidental hazard, the best way to predict a reasonable size of a specific accidental load would be the employment of a probabilistic approach. Having the fact that a specific procedure for probabilistic accidental hazard analysis has not yet been established especially for explosion and fire hazards, it is widely accepted that engineers usually take simple and conservative figures in assuming uncertainties inherent in the procedure, resulting either in underestimation or more likely in overestimation in the topside structural design for offshore plants. The variation in the results of a probabilistic approach is determined by the assumptions accepted in the procedures of explosion probability computation, explosion analysis, and structural analysis. A design overpressure load for a sample offshore plant is determined according to the proposed probabilistic approach in this study. CFD analysis results using a Flame Acceleration Simulator, FLACS_v9.1, are utilized to create an overpressure hazard curve. Moreover, the negative impulse and frequency contents of a blast wave are considerably influencing structural responses, but those are completely ignored in a widely used triangular form of blast wave. An idealistic blast wave profile deploying both negative and positive pulses is proposed in this study. A topside process module and piperack with blast wall are 3D FE modeled for structural analysis using LS-DYNA. Three different types of blast wave profiles are applied, two of typical triangular forms having different impulse and the proposed load profile. In conclusion, it is found that a typical triangular blast load leads to overestimation in structural design.

내부 폭발하중을 받는 철근콘크리트 코어의 연쇄붕괴 해석 (Progressive Collapse Analysis of Reinforced Concrete Core Structure Subjected to Internal Blast Loading)

  • 김한수;안재균;안효승
    • 콘크리트학회논문집
    • /
    • 제26권6호
    • /
    • pp.715-722
    • /
    • 2014
  • 본 논문에서는 철근콘크리트 코어 구조물의 내부폭발 효과를 폭발이나 충격해석에 특화되어 있는 하이드로코드인 Ansys Autodyn을 이용하여 조사하였다. 내부폭발의 경우 폭발하중의 반사효과로 인해 더욱 큰 파괴를 일으킬 수 있다. 그러므로, 본 논문에서는 UFC 3-340-02 를 사용하여 내부 폭발현상을 입증하였다. 추가적으로 Autodyn을 사용한 해석에 관하여 UFC에서 예제로 제시하는 폭발하중의 반사에 관한 실험 결과를 비교하여 Autodyn이 내부폭발 효과를 해석하는데 적합함을 증명하였다. 나아가, 초고층빌딩에서 가장 중요한 부분 중의 하나의 코어 구조의 붕괴메커니즘을 Autodyn을 사용하여 해석하였다. 내부폭발이 코어에 충격을 가할 때, 코어는 모서리와 폭발 정면 부분이 대부분 피해를 입었다. 그러므로, 코어 벽체가 피해를 입게 된다면 코어 구조물의 연쇄붕괴가 발생할 수 있다.

Validation study on numerical simulation of RC response to close-in blast with a fully coupled model

  • Gong, Shunfeng;Lu, Yong;Tu, Zhenguo;Jin, Weiliang
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.283-300
    • /
    • 2009
  • The characteristic response of a structure to blast load may be divided into two distinctive phases, namely the direct blast response during which the shock wave effect and localized damage take place, and the post-blast phase whereby progressive collapse may occur. A reliable post-blast analysis depends on a sound understanding of the direct blast effect. Because of the complex loading environment and the stress wave effects, the analysis on the direct effect often necessitates a high fidelity numerical model with coupled fluid (air) and solid subdomains. In such a modelling framework, an appropriate representation of the blast load and the high nonlinearity of the material response is a key to a reliable outcome. This paper presents a series of calibration study on these two important modelling considerations in a coupled Eulerian-Lagrangian framework using a hydrocode. The calibration of the simulated blast load is carried out for both free air and internal explosions. The simulation of the extreme dynamic response of concrete components is achieved using an advanced concrete damage model in conjunction with an element erosion scheme. Validation simulations are conducted for two representative scenarios; one involves a concrete slab under internal blast, and the other with a RC column under air blast, with a particular focus on the simulation sensitivity to the mesh size and the erosion criterion.

고로내 열유동 현상의 수치해석 사례(I) (Numerical simulation of thermo-fluid flow in the blast furnace)

  • 진홍종;최상민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2038-2043
    • /
    • 2007
  • Analysis of the internal state of the blast furnace is needed to predict and control the operating condition. Especially, it is important to develop modeling of blast furnace for predicting cohesive zone because shape of cohesive zone influences on overall operating condition of blast furnace such as gas flow, temperature distribution and chemical reactions. Because many previous blast furnace models assumed cohesive zone to be fixed, they can't evaluate change of cohesive zone shape by operation condition such as PCR, blast condition and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace process using the general purpose-simulation code. And Porous media is assumed for the gas flow and the potential flow for the solid flow. Velocity, pressure and temperature distribution for gas and solid are displayed as the simulation results. The cohesive zones are figured in 3 different operating conditions.

  • PDF

융착대 예측을 위한 고로공정 모델링 (Blast Furnace Modeling for Predicting Cohesive Zone Shape)

  • 양광혁;최상민;정진경
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.39-45
    • /
    • 2006
  • Analysis of the internal state of the blast furnace is needed to predict and control the operating condition. Especially, it is important to develop modeling of blast furnace for predicting cohesive zone because shape of cohesive zone influences overall operating condition of blast furnace such as gas flow, chemical reactions and temperature. because many previous blast furnace models assumed cohesive zone to be fixed, they can't evaluate change of cohesive zone shape by operation condition such as PCR, blast condition, and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace process. In this model, cohesive zone is changed by solid temperature range, FVM is used for numerical simulation. To find location of cohesive zone whole calculation procedure is iterated Until cohesive zone is converged. Through this approach, shape of cohesive zone, velocity, composition and temperature within the furnace are predicted by model.

  • PDF

터널 굴착 시 주변 구조물에 미치는 영향을 고려한 발파 설계 사례 (Case Study of Blasting Pattern Design for Tunnelling in Which Considered Blast Induced Vibration Affected Across Buildings)

  • 백승규;추석연;윤종오;백운일;박형섭
    • 터널과지하공간
    • /
    • 제16권5호
    • /
    • pp.377-386
    • /
    • 2006
  • 본 연구에서는 기존의 시추공 시험 발파 결과를 이용한 분석뿐만 아니라, 3차원 수치 해석으로 터널 굴착 시 실제 발파와 동일한 조건을 적용한 발파진동영향 검토를 실시하고 주변 구조물에 미치는 진동 영향을 분석하여 발파패턴 설계를 수행하였다.

Numerical analysis of tunnel in rock with basalt fiber reinforced concrete lining subjected to internal blast load

  • Jain, Priyanka;Chakraborty, Tanusree
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.399-406
    • /
    • 2018
  • The present study focuses on the performance of basalt fiber reinforced concrete (BFRC) lining in tunnel situated in sandstone rock when subjected to internal blast loading. The blast analysis of the lined tunnel is carried out using the three-dimensional (3-D) nonlinear finite element (FE) method. The stress-strain response of the sandstone rock is simulated using a crushable plasticity model which can simulate the brittle behavior of rock and that of BFRC lining is analyzed using a damaged plasticity model for concrete capturing damage response. The strain rate dependent material properties of BFRC are collected from the literature and that of rock are taken from the authors' previous work using split Hopkinson pressure bar (SHPB). The constitutive model performance is validated through the FE simulation of SHPB test and the comparison of simulation results with the experimental data. Further, blast loading in the tunnel is simulated for 10 kg and 50 kg Trinitrotoluene (TNT) charge weights using the equivalent pressure-time curves obtained through hydrocode simulations. The analysis results are studied for the stress and displacement response of rock and tunnel lining. Blast performance of BFRC lining is compared with that of plain concrete (PC) and steel fiber reinforced concrete (SFRC) lining materials. It is observed that the BFRC lining exhibits almost 65% lesser displacement as compared to PC and 30% lesser displacement as compared to SFRC tunnel linings.

전산해석을 이용한 부분 보강된 CFT 기둥의 폭발저항성능 평가 (An Evaluation of Blast Resistance of Partially Reinforced CFT Columns using Computational Analysis)

  • 김한수;위해환
    • 한국전산구조공학회논문집
    • /
    • 제28권5호
    • /
    • pp.503-510
    • /
    • 2015
  • 본 논문에서는 부분 보강된 CFT 기둥의 폭발저항성능을 일반 CFT 기둥과 비교하여 강판 보강의 효과를 확인하였다. 폭발하중을 받는 CFT 기둥의 구조해석에는 폭발과 충돌 해석을 위한 특수한 하이드로코드인 Autodyn을 사용하여 수치해석을 수행하였다. 콘크리트와 이를 둘러싸고 있는 강판 사이의 상호작용을 모델링하는 여러 방법이 있다. 본 연구에서는 기둥의 실제 파괴를 표현하기 위해 마찰 옵션 및 조인 옵션으로 모델링하였다. 해석에 따르면, 부분 보강된 CFT 기둥은 일반 CFT 기둥에 비해 더 나은 폭발저항효과를 나타내었다. 보강 CFT 기둥의 폭발저항성능은 콘크리트를 둘러싸고 있는 부분 보강된 강판의 높이가 높을수록 향상되었으며 CFT 기둥의 단면 크기 이상으로 보강할 것을 추천한다.

반응표면분석법에 의한 탄소포집 활성 고로슬래그 모르타르의 최적배합 도출에 관한 연구 (Optimized Mixing Design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar by Response Surface Analysis)

  • 장봉진;박철우;김승원;주민관;박기태;이상윤
    • 한국도로학회논문집
    • /
    • 제15권6호
    • /
    • pp.69-78
    • /
    • 2013
  • PURPOSES : In this study blast furnace slag, an industrial byproduct, was used with an activating chemicals, $Ca(OH)_2$ and $Na_2SiO_3$ for carbon capture and sequestration as well as strength development. METHODS : This paper presents the optimized mixing design of Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar. Design of experiments in order to the optimized mixing design was applied and commercial program (MINITAB) was used. Statistical analysis was used to Box-Behnken (B-B) method in response surface analysis. RESULTS : The influencing factors of experimental are water ratio, Chemical admixture ratio and Curing temperature. In the results of response surface analysis, to obtain goal performance, the optimized mixing design for Carbon-Capturing and Sequestering Activated Blast-Furnace Slag Mortar were water ratio 40%, Chemical admixture ratio 58.78% and Curing temperature of $60^{\circ}C$. CONCLUSIONS : Compared with previous studies of this experiment is to some extent the optimal combination is expected to be reliable.

적응 변조 시스템에서 최적의 터보 부호화된 V-BLAST 기법의 성능 분석 (Performance Analysis of the Optimal Turbo Coded V-BLAST technique in Adaptive Modulation System)

  • 이경환;최광욱;류상진;강민구;홍대기;유철우;황인태;김철성
    • 한국정보통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.385-391
    • /
    • 2007
  • 본 논문에서는 V-BLAST (Vertical-Bell-lab Layered Space Time)의 두 디코딩 과정인 ordering과 slicing에 사전 확률 (a priori probability)로 사용하기 위해서 반복 디코딩 (iterative decoding)을 사용한 MAP (Maximum A Posteriori) 디코더의 외부 정보 (extrinsic information)를 이용한 최적의 터보 부호화된 (Turbo Coded) V-BLAST 기법을 적용한 적응 변조 시스템 (adaptive modulation system)을 제시 후 성능을 관찰한다. 또한 적응 변조 시스템에서 간단하게 V-BLAST 시스템과 터보 부호화 (Turbo Coding) 기법이 결합된 기존의 터보 부호화된 V-BLAST 기법을 적용한 경우에 비하여 어느 정도 전송률 (throughput)향상이 있는가를 살펴본다. 실험결과, 적응 변조 시스템에서 최적의 터보 부호화된 V-BLAST 기법을 적용한 경우가 기존의 터보 부호화된 V-BLAST 기법을 적용한 경우에 비하여 전송률 성능이 우수함을 보였다. 특히, 실험 결과는 2.5 Mbps의 전송률에서 1.5 dB의 SNR 이득을 보인다.