• Title/Summary/Keyword: blast analysis

Search Result 976, Processing Time 0.033 seconds

Impact of composite materials on performance of reinforced concrete panels

  • Mazek, Sherif A.;Mostafa, Ashraf A.
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.767-783
    • /
    • 2014
  • The use of composite materials to strengthen reinforced concrete (RC) structures against blast terror has great interests from engineering experts in structural retrofitting. The composite materials used in this study are rigid polyurethane foam (RPF) and aluminum foam (ALF). The aim of this study is to use the RPF and the ALF to strengthen the RC panels under blast load. The RC panel is considered to study the RPF and the ALF as structural retrofitting. Field blast test is conducted. The finite element analysis (FEA) is also used to model the RC panel under shock wave. The RC panel performance is studied based on detonating different TNT explosive charges. There is a good agreement between the results obtained by both the field blast test and the proposed numerical model. The composite materials improve the RC panel performance under the blast wave propagation.

Blast Analysis and Damage Evaluation for Reinforced Concrete Building Structures (RC Building 구조물의 폭발해석 및 손상평가)

  • Park, Yang Heum;Yun, Sung-Hwan;Jang, Il Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.331-340
    • /
    • 2021
  • The blast damage behavior of reinforced concrete (RC) structures exposed to unexpected extreme loading was investigated. To enhance the accuracy of numerical simulation for blast loading on RC structures with seven blast points, the calculation of blast loads using the Euler-flux-corrected-transport method, the proposed Euler-Lagrange coupling method for fluid-structure interaction, and the concrete dynamic damage constitutive model including the strain rate-dependent strength and failure models was implemented in the ANSYS-AUTODYN solver. In the analysis results, in the case of 20 kg TNT, only the slab member at three blast points showed moderate and light damage. In the case of 100 kg TNT, the slab and girder members at three blast points showed moderate damage, while the slab member at two blast points showed severe damage.

Numerical Analysis of the Subscale Blast Door Deformation and the Subsequent Blast Wave Propagation through the Tunnel by the External Explosion (외부 폭발에 의한 축소형 방폭문 변형 및 터널 내부 폭풍파 전파 거동의 수치해석)

  • Yun, Kyung Jae;Yoo, Yo-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.462-468
    • /
    • 2016
  • In this paper, we present the results of the numerical analysis employing CONWEP, LS-DYNA FSI(Fluid Structure Interaction), AUTODYN FSI, LS-DYNA ALE(Arbitrary Lagrange Eulerian) and combination of CONWEP and LS-DYNA ALE for blast door fracture and wave propagation through the tunnel by the external explosion. We compared the numerical analysis results with the subscale test data and selected combination of CONWEP and LS-DYNA ALE method as adequate data generation method for the FRM(Fast Running Model) software development. It is expected to save much time and costs by using the numerical simulation data for the various test conditions.

Numerical evaluation of FRP composite retrofitted reinforced concrete wall subjected to blast load

  • Nam, Jin-Won;Yoon, In-Seok;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.215-225
    • /
    • 2016
  • High performance materials such as Fiber Reinforced Plastic (FRP) are often used for retrofitting structures against blast loads due to its ductility and strength. The effectiveness of retrofit materials needs to be precisely evaluated for the retrofitting design based on the dynamic material responses under blast loads. In this study, the blast resistance of Carbon Fiber Reinforced Plastic (CFRP) and Kevlar/Glass hybrid fabric (K/G) retrofitted reinforced concrete (RC) wall is analyzed by using the explicit analysis code LS-DYNA, which accommodates the high-strain rate dependent material models. Also, the retrofit effectiveness of FRP fabrics is evaluated by comparing the analysis results for non-retrofitted and retrofitted walls. The verification of the analysis is performed through comparisons with the previous experimental results.

Structural response of concrete gravity dams under blast loads

  • Sevim, Baris;Toy, Ahmet Tugrul
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.503-510
    • /
    • 2020
  • Concrete dams are important structures due to retaining amount of water on their reservoir. So such kind of structures have to be designed against static and dynamic loads. Especially considering on critical importance against blasting threats and environmental safety, dams have to be examined according to the blast loads. This paper aims to investigate structural response of concrete gravity dams under blast loads. For the purpose Sarıyar Concrete Gravity Dam in Turkey is selected for numerical application with its 85 m of reservoir height (H), 255 m of reservoir length (3H), 72 m of bottom and 7 m of top widths. In the study, firstly 3D finite element model of the dam is constituted using ANSYS Workbench software considering dam-reservoir-foundation interaction and a hydrostatic analysis is performed without blast loads. Then, nearly 13 tons TNT explosive are considered 20 m away from downstream of the dam and this is modeled using ANSYS AUTODYN software. After that explicit analyses are performed through 40 milliseconds. Lastly peak pressures obtained from analyses are compared to empirical equations in the literature and UFC 3-340-02 standard which provide unified facilities criteria for structures to resist the effects of accidental explosions. Also analyses' results such as displacements, stresses and strains obtained from both hydrostatic and blasting analysis models are compared to each other. It is highlighted from the study that blasting analysis model has more effective than the only hydrostatic analysis model. So it is highlighted from the study that the design of dams should be included the blast loads.

Numerical Analysis on Characteristics of Blast Wave in Open Space and Structure (개활지 및 구조물 내에서의 폭풍파 특성에 대한 수치 분석)

  • Roh, Taejun;Lee, Younghun;Ji, Juntae;Lee, Woonghyun;Yoh, Jai-ick
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.43-51
    • /
    • 2020
  • In this study, numerical analysis was carried out on a complex pressure field of blast waves caused by the detonation of high explosives in various environments. The generated blast waves propagated in the air, upon the sudden release of high energy induced by the explosion. Reflected waves were created when the pressure waves encountered certain obstacles such as the ground or the walls of structures. The propagation of the blast waves and its interaction with the reflected waves were simulated. An adaptive mesh refinement was applied to improve the efficiency of distribution of computer resource, for the computational calculation of the blast wave propagation in a wide open space. In addition, the integration of the calculation domains for the explosive and air were considered when the maximum density of the explosive region was below critical value. The results were verified by comparison with the pressure time history from blast wave experiments performed under two topographical conditions.

Nonlocal Formulation for Numerical Analysis of Post-Blast Behavior of RC Columns

  • Li, Zhong-Xian;Zhong, Bo;Shi, Yanchao;Yan, Jia-Bao
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.403-413
    • /
    • 2017
  • Residual axial capacity from numerical analysis was widely used as a critical indicator for damage assessment of reinforced concrete (RC) columns subjected to blast loads. However, the convergence of the numerical result was generally based on the displacement response, which might not necessarily generate the correct post-blast results in case that the strain softening behavior of concrete was considered. In this paper, two widely used concrete models are adopted for post-blast analysis of a RC column under blast loading, while the calculated results show a pathological mesh size dependence even though the displacement response is converged. As a consequence, a nonlocal integral formulation is implemented in a concrete damage model to ensure mesh size independent objectivity of the local and global responses. Two numerical examples, one to a RC column with strain softening response and the other one to a RC column with post-blast response, are conducted by the nonlocal damage model, and the results indicate that both the two cases obtain objective response in the post-peak stage.

Blast Fragility and Sensitivity Analyses of Steel Moment Frames with Plan Irregularities

  • Kumar, Anil;Matsagar, Vasant
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1684-1698
    • /
    • 2018
  • Fragility functions are determined for braced steel moment frames (SMFs) with plans such as square-, T-, L-, U-, trapezoidal-, and semicircular-shaped, subjected to blast. The frames are designed for gravity and seismic loads, but not necessarily for the blast loads. The blast load is computed for a wide range of scenarios involving different parameters, viz. charge weight, standoff distance, and blast location relative to plan of the structure followed by nonlinear dynamic analysis of the frames. The members failing in rotation lead to partial collapse due to plastic mechanism formation. The probabilities of partial collapse of the SMFs, with and without bracing system, due to the blast loading are computed to plot fragility curves. The charge weight and standoff distance are taken as Gaussian random input variables. The extent of propagation of the uncertainties in the input parameters onto the response quantities and fragility of the SMFs is assessed by computing Sobol sensitivity indices. The probabilistic analysis is conducted using Monte Carlo simulations. The frames have least failure probability for blasts occurring in front of their corners or convex face. Further, the unbraced frames are observed to have higher fragility as compared to counterpart braced frames for far-off detonations.

A Study on Model Establishment and Structural Analysis for Gun Blast Load (기총 폭발 하중에 대한 모델 수립과 구조 해석에 관한 연구)

  • Kim, Dae-Kwan;Han, Jae-Hung;Jang, Jae-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.33-39
    • /
    • 2005
  • A mathematical model, GUNBLAST, of blast waves emitted from a gun muzzle is established, and structural response analyses for the blast load are performed. The blast wave can be divided into two kinds of waves, free field and reflected blast waves. In this research, the free field blast wave model is established by the use of a scaling approach, and the reflected blast wave is calculated by using the oblique shock theory and computational fluid dynamic calculation. GUNBLAST is applied to two kinds of structural models. To investigate the effect of the muzzle distance from a structural surface, the blast waves on a plate for various muzzle distances are compared to uniform loads. Moreover, the transient response analysis of an aircraft wing model with a 12.7mm gun is carried out by using MSC/NASTRAN. From the results, it can be shown that the blast wave can cause broad random vibration and high frequency damage to equipments mounted in the aircraft.

Debonding failure analysis of FRP-retrofitted concrete panel under blast loading

  • Kim, Ho Jin;Yi, Na Hyun;Kim, Sung Bae;Nam, Jin Won;Ha, Ju Hyung;Kim, Jang-Ho Jay
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.479-501
    • /
    • 2011
  • Even though fiber reinforced polymer (FRP) has been widely used as a retrofitting material, the FRP behavior and effect in FRP retrofitted structure under blast loading, impulsive loading with instantaneous time duration, has not been accurately examined. The past studies have focused on the performance of FRP retrofitted structures by making simplifications in modeling, without incorporating accurate failure mechanisms of FRP. Therefore, it is critical to establish an analytical model that can properly consider the specific features of FRP material in evaluating the response of retrofitted concrete structures under blast loading. In this study, debonding failure analysis technique for FRP retrofitted concrete structure under blast loading is suggested by considering FRP material characteristics and debonding failure mechanisms as well as rate dependent failure mechanism based on a blast resisting design concept. In addition, blast simulation of FRP retrofitted RC panel is performed to validate the proposed model and analysis method. For validation of the proposed model and analysis method, the reported experimental results are compared with the debonding failure analysis results. From the comparative verification, it is confirmed that the proposed analytical model considering debonding failure of FRP is able to reasonably predict the behavior of FRP retrofitted concrete panel under blast loading.