• Title/Summary/Keyword: blast analysis

Search Result 985, Processing Time 0.025 seconds

Numerical Modelling of Temperature Distribution and Pressure Drop through the Layered Burden Loading in a Blast Furnace

  • Yang, Kwang-Heok;Choi, Sang-Min;Chung, Jin-Kyung
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • Analysis of the internal state of the blast furnace is necessary to predict and to control the operating conditions. Especially, it is important to develop models of the blast furnace to predict the cohesive zone because shape of the cohesive zone influences overall operating conditions of blast furnace such as gas flow, chemical reactions and temperature. Because many previous blast furnace models have assumed cohesive zone to be fixed, it was not possible to evaluate the shape change of cohesive zone in relation with operating conditions such as PCR, blast condition, and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace processes. In this model, cohesive zone is determined by the solid temperature. Finite volume method is employed for numerical simulation. To find location of the cohesive zone, entire calculation procedure is iterated until converged. Through this approach, shape of the cohesive zone, velocity and temperature within the furnace are predicted from the model.

  • PDF

Analytical Evaluations of the Retrofit Performances of Concrete Wall Structures Subjected to Blast Load (폭발하중을 받는 콘크리트 벽체 구조물의 보강 성능에 대한 해석적 분석)

  • Kim, Ho-Jin;Nam, Jin-Won;Kim, Sung-Bae;Kim, Jang-Ho;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.241-250
    • /
    • 2007
  • In case of retrofitting a concrete structure subjected to blast load by using retrofit materials such as FRP (fiber-reinforced polymer), appropriate ductility as well as raising stiffness must be obtained. But the previous approximate and simplified models, which have been generally used in the design and analysis of structures subjected to blast load, cannot accurately consider effects on retrofit materials. Problems on the accuracy and reliability of analysis results have also been pointed out. In addition, as the response of concrete and reinforcement on dynamic load is different from that on static load, it is not appropriate to use material properties defined in the previous static or quasi-static conditions to in calculating the response on the blast load. In this study, therefore, an accurate HFPB (high fidelity physics based) finite element analysis technique, which includes material models considering strength increase, and strain rate effect on blast load with very fast loading velocity, has been suggested using LS-DYNA, an explicit analysis program. Through the suggested analysis technique, the behavior on the blast load of retrofitted concrete walls using CFRP (carbon fiber-reinforced polymer) and GFRP (glass fiber-reinforced polymer) have been analyzed, and the retrofit capacity analysis has also been carried out by comparing with the analysis results of a wall without retrofit. As a result of the analysis, the retrofit capacity showing an approximate $26{\sim}28%$ reduction of maximum deflection, according to the retrofit, was confirmed, and it is judged ate suggested analysis technique can be effectively applicable in evaluating effectiveness of retrofit materials and techniques.

An Evaluation of Blast Resistance Performance of RC Columns According to the Shape of Cross Section (단면의 형상에 따른 철근콘크리트 기둥의 폭발저항 성능 평가)

  • Kim, Han-Soo;Park, Jae-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.387-394
    • /
    • 2010
  • The alternative load path method based on a column removal scenario has been commonly used to protect building structures from being progressively collapsed due to probable blast loading. However, this method yields highly conservative result when the columns still have substantial load resisting capacity after blast. In this study, the behavior of RC columns with rectangular and circular sections under the blast loading was investigated and the remaining capacity of the partially damaged columns was compared. AUTODYN which is a hydrocode for the analysis of the structure on the impact and blast loading was used for this study. The blast loading was verified with the experiment results. The analysis results showed that the circular columns are preferable to the rectangular ones in respect of the blast resistance performance.

Statistical Analysis of the Physical Properties in a Slag-OPC-Gypsum System as a Compound Mixing Ratio

  • You, Kwang-Suk;Lee, Kyung-Hoon;Han, Gi-Chun;Kim, Hwan;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.477-482
    • /
    • 2007
  • The effect of the mixing ratio of compounds in a slag-OPC-Gypsum system on the physical properties of Slag cement is investigated in this study. $Na_2SO_4$ was used as an alkali activator. Blast furnace slag cement was prepared from a mixture of blast furnace slag, ordinary Portland cement and anhydride gypsum. The fluidity and the compressive strength according to the ratio of each mixture were analyzed in statistical analyses in order to discover the parameters influencing the fluidity and compressive strength. The results showed that the hydration of blast furnace slag took place with the addition of $Na_2SO_4$ and that column-crystalline ettringite was created as the main hydration product of the blast furnace slag. In addition, it was found that the compressive strength of blast furnace slag cement tends to increase when the ordinary Portland cement content is higher up to three days. However, it is known that the compressive strength tends to increase as the blast furnace slag content becomes higher with increases in the level of OPC after 28 days. As a result of this analysis, it is believed that the ordinary Portland cement content influences the initial compressive strength of blast furnace slag cement, and that in later days this is highly influenced by the slag content.

Analysis of Rebound Behavior of Blast-Resistant Door Subjected to Blast Pressure (폭압 작용에 의한 방폭문의 반발거동 해석)

  • Shin, Hyun-Seop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.371-383
    • /
    • 2021
  • Steel-concrete single-leaf blast-resistant doors, having steel box and slab inside, are installed on the wall using supporting members such as hinges and latches. Several studies have been conducted on their deflection behavior in the same direction as that of the blast pressure, but studies on their deflection behavior in the opposite direction, that is, studies on negative deflection behavior are relatively insufficient. In this study, we conducted a parameter analysis using finite element analysis on blast-resistant doors, on their rebound behavior in the negative deflection phase. Results revealed that the plastic deformation of the door, and the change in momentum and kinetic energy during rebound, were major factors influencing the rebound behavior. Greater rebound force was developed on the supporting members in the impulsive region, than in the quasi-static region; due to the characteristics in the impulsive region, where the kinetic energy developed relatively greater than the strain energy. In the design process, it is necessary to consider excessive deformation that could occur in the supporting members as the rebound behavior progresses. Additionally, it was found that in the case of steel-concrete blast doors, the rebound force increased relatively more, when the effects of both rebound and negative blast pressure contributed to the negative deflection of the door. Since conditions for the occurrence of this superposition effect could vary depending on structural characteristics and explosion conditions, further investigation may be required on this topic.

A Dynamic Analysis and Evaluation of a Building Structure due to Tunnel Blast by using Semi-Empirica Method (준경험적 방법을 이용한 터널발파 작업시 인접구조물의 동적해석 및 진동영향성 평가)

  • Son, Sung-Wan;Ru, Kuk-Hyun;Chun, Jong-Kun;Nam, Young-Sik;Kim, Dong-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.772-775
    • /
    • 2005
  • Most engineers, related to soil and civil dynamic field, have been interested in the direct dynamic design of building transmitted from soil and rock to structure due to blasting. However it is not easy to estimate the dynamic response of structures due to blasting by using analytical method because of difficulties of soil modeling, prediction of excitation force and so on. In this paper, dynamic analysis have been performed to predict vibration level and evaluate dynamic safety of structure adjacent to tunnel blast and the semi empirical method, which is based on vibration measurement data, has been employed to consider blast vibration characteristics.

  • PDF

FEA of the blast loading effect on ships hull

  • Hamdoon, Muhsin;Zamani, Nader;Das, Sreekanta
    • Ocean Systems Engineering
    • /
    • v.1 no.3
    • /
    • pp.223-239
    • /
    • 2011
  • In combat operations, naval ships may be subjected to considerable air blast and underwater shock loads capable of causing severe structural damage. As the experimental study imposes great monetary and time cost, the numerical solution may provide a valuable alternative. This study emphasises on numerical analysis for optimization of stiffened and unstiffened plate's structural response subjected to air blast load. Linear and non linear finite element (FE) modeling and analysis was carried out and compared with existing experimental results. The obtained results reveal a good agreement between numerical and experimental observations. The presented FE models can eliminate confusion regarding parameters selection and FE operations processing, using commercial software available currently.

A Study on the Construction Vibrations Prediction of Bridge Structures using the Reliability Index (신뢰성 지수를 이용한 교량 구조물의 건설진동 예측에 관한 연구)

  • 박연수;우정하;전양배;김응록;김동현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.442-449
    • /
    • 2003
  • This study presents a new analysis of blast vibration equations of a bridge structures using a reliability index. Changing the reliability makes each blast vibration equation. The blast equations are divided into three classes, having 50%, 90% and 99.9% at ${\beta}$=0, 1.28 and 3 respectively. In the result of this research, the assumption equations which used ${\beta}$=1.28 is suitable. By using these blast equations, it is possible for users to predict reliable ground vibration values upon demand.

  • PDF

Damage Analysis of Rice Panicle Blast on Disease Occurrence Time and Severity

  • Shim, Hong-Sik;Hong, Sung-Jun;Yeh, Wan-Hae;Han, Seong-Sook;Sung, Jae-Mo
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.87-92
    • /
    • 2005
  • The structural differences between healthy and diseasedpanicle necks caused by Pyricularia oryzae were observed using electron-microscope. In the diseased panicle neck, the infection hyphae of the rice blast pathogen grew through the sclerenchymatous fiber tissue and reached to the central internal lacuna. Since the pathogen grew through the sclerenchymatous fiber tissues, the vascular bundle composed with xylem and phloem had been destroyed and finally the nutrients from the leaf and stem were not able to be transported into the grains. Infection of panicle base by the blast pathogen until 20 days after heading caused more than 50% of yield loss in both Jinmibyeo and Chucheongbyeo. There was a positive correlation between incidence of the panicle blast and rice yield losses. The regression equations between incidence of the panicle blast and yield losses were y= -3.61+496.7 ($R^2$=0.70) in Jinmibyeoand y=-3.93+520.2 ($R^2$=0.82) in Juanbyeo. The panicleblast caused deterioration of grain quality. Healthy grain rate was reduced by increase of panicle blast infection.