• Title/Summary/Keyword: blast

Search Result 3,434, Processing Time 0.025 seconds

Properties of Self Compacting Concrete Using Ground Granulated Blast Furnace Slag (고로슬래그미분말을 사용한 고유동콘크리트의 특성)

  • 김은겸;박천세;전찬기;이호석;최재진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.579-584
    • /
    • 2002
  • In this research, the physical properties of self compacting concrete using ground granulated blast furnace slag as a part of cement were investigated. Concrete using ground granulated blast furnace slag was prepared with various ground granulated blast furnace slag replacement(20~80 volume %) for cement and the quantities of coarse aggregate in concrete were 50%, 55% and 60% of ratio of absolute volume of coarse aggregate. The workability, flowing characteristics, air content and compressive strength of concrete using ground granulated blast furnace slag were tested and the results were compared with those of ordinary portland cement concrete. In the experiment, we acquired satisfactory results at the point of flowing characteristics and strengths of concrete using ground granulated blast furnace slag within tile replacement ratio of 50% and the optimum quantity of coarse aggregate in concrete was found to be 50%~55% of ratio of absolute volume of coarse aggregate.

  • PDF

A Study on the Characteristics of Blasting Vibration and Breaker Vibration by Rock Excavation (암반굴착에 따른 발파진동과 브레이커진동의 특성에 관한 연구)

  • Lim, Han-Uk;Park, Hyeon-Seong
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.107-117
    • /
    • 2002
  • The blast works for open cuts and underground constructions near urban areas have recently increased complaint of ground vibration, air blast and fly rock. In order to reduce these problems, it is necessary to develop more cautious blasting, or non-blast excavation methods by mechanical power. For these breaker workings instead of blast are sometimes adopted. To compare the characteristics of blast vibration with breaker vibration, the level, range of frequency and spectrum amplifications of each vibration were studied.

  • PDF

Evaluation of Compressive Strength of Mortar Replaced to High Volume Blast Furnace Slag (고로슬래그 미분말을 다량 치환한 모르타르의 압축강도 평가)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Lee, Se-Bum;Lee, Byoung-Cheon;Shin, Kyoung-Su;Kim, Hong-Seop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.103-105
    • /
    • 2012
  • With blast-furnace slag is a by-product generated when pig iron is produced. It has been used as the concrete admixture due to high reactivity. However, It causes low strength development during early age. In order to make up for this drawback, in this study, we evaluated compressive strength of mortar replaced with high volume blast-furnace slag. Experimental results, Compressive strength of mortar based on blast-furnace slag is affected by cement type, substitution rate of blast-furnace slag and pH after mixing.

  • PDF

Effects of blast-induced random ground motions on the stochastic behaviour of industrial masonry chimneys

  • Haciefendioglu, Kemal;Soyluk, Kurtulus
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.835-845
    • /
    • 2012
  • This paper focuses on the stochastic response analysis of industrial masonry chimneys to surface blast-induced random ground motions by using a three dimensional finite element model. Underground blasts induce ground shocks on nearby structures. Depending on the distance between the explosion centre and the structure, masonry structures will be subjected to ground motions due to the surface explosions. Blast-induced random ground motions can be defined in terms of the power spectral density function and applied to each support point of the 3D finite element model of the industrial masonry system. In this paper, mainly a parametric study is conducted to estimate the effect of the blast-induced ground motions on the stochastic response of a chimney type masonry structure. With this purpose, different values of charge weight and distance from the charge centre are considered for the analyses of the chimney. The results of the study underline the remarkable effect of the surface blast-induced ground motions on the stochastic behaviour of industrial masonry type chimneys.

A Experimental Study on the Comparison of the Compression Strength Characteristics of Mortar using the Blast-Furnace Slag Sand (슬래그모래를 사용한 모르터의 압축강도특성 비교에 관한 실험적 연구)

  • 김종락;김성식;이복만;임남기;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.40-45
    • /
    • 1999
  • This experimental study presents the strength properties of mortar using the blast-furnace slag sand. The mix disign of this study is based on the each three classes of unit water; (250, 275, 300)kg/㎥ and four classes of W/C; (45, 50, 55, 60)% and substitution rate(0, 25, 50, 75, 100)%. It gives following result. As W/C ratio increase, the strength is decrease. In case of mortar using air-cooled blast-furnace slag sand, the 3-days and 7-days compression strength is increase as substitution rate is higher. But in case of the mortar using the quenched blast-furnace slag sand, the compression strength is decrease as substitution rate is higher.

  • PDF

Failure Modeling of Bridge Components Subjected to Blast Loading Part I: Strain Rate-Dependent Damage Model for Concrete

  • Wei, Jun;Quintero, Russ;Galati, Nestore;Nanni, Antonio
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • A dynamic constitutive damage model for reinforced concrete (RC) structures and formulations of blast loading for contact or near-contact charges are considered and adapted from literatures. The model and the formulations are applied to the input parameters needed in commercial finite element method (FEM) codes which is validated by the laboratory blast tests of RC slabs from literature. The results indicate that the dynamic constitutive damage model based on the damage mechanics and the blast loading formulations work well. The framework on the dynamic constitutive damage model and the blast loading equations can therefore be used for the simulation of failure of bridge components in engineering applications.

Evaluation of the Fundamental Properties of Zero-Cement Mortar Using Blast Furnace Slag From Different Areas (산지 별 고로슬래그 미분말 변화에 따른 무시멘트 순환잔골재 모르타르의 기초적 특성 평가)

  • Zhao, Yang;Lee, Hong-Kyu;Kang, Byoung-Hoi;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.210-211
    • /
    • 2014
  • Nowadays, as to reduce the emission volume of CO2, blast furnace slag has been widely used to replacement of cement. Techniques about using industrial by-products has been extensively studied. For the previous study, blast furnace slag has been used with recycled fine aggregates. In thess study, considering about the different properties of blast furnace slag, as the change of blaine and chemical performances of blast furnace slag, the results of flowability and compressive strength has been analysed.

  • PDF

Mechanical Properties of Blast Furnace Slag Fineness Mortar according to Alkali Activator (알칼리 자극제 종류에 의한 고로슬래그 미분말 모르타르의 강도 특성)

  • Kim, Jong-Hee;Kim, Gyu-Yong;Shin, Kyoung-Su;Nam, Jeong-Soo;Koo, Kyung-Mo;Yun, Yong-Sang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.217-218
    • /
    • 2011
  • The advantages of blast-furnace slag concrete may include lower hydration heating velocity, restraint on concrete temperature increase, long-age strength improvement due to latent hydraulic reaction, improved water tightness, and repulsion to chemical erosion. These advantages contribute to the high quality of the blast-furnace slag concrete. However, the blast-furnace slag concrete has its limitations as well. These disadvantages may include retarded setting and elongated retention of mold due to the weak strength of early-age. Nevertheless, much research is currently under way to improve the aforementioned issues. To improve activity of blast furnace slag powder, alkaline irritants has been used. In this study, we analyze effect on activity fineness and rate of substitution of Alkali Activator toward activity.

  • PDF

A performance based strategy for design of steel moment frames under blast loading

  • Ashkezari, Ghasem Dehghani
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.155-164
    • /
    • 2018
  • Design of structures subjected to blast loads are usually carried out through nonlinear inelastic dynamic analysis followed by imposing acceptance criteria specified in design codes. In addition to comprehensive aspects of inelastic dynamic analyses, particularly in analysis and design of structures subjected to transient loads, they inherently suffer from convergence and computational cost problems. In this research, a strategy is proposed for design of steel moment resisting frames under far range blast loads. This strategy is inspired from performance based seismic design concepts, which is here developed to blast design. For this purpose, an algorithm is presented to calculate the capacity modification factors of frame members in order to simplify design of these structures subjected to blast loading. The present method provides a simplified design procedure in which the linear dynamic analysis is preformed, instead of the time-consuming nonlinear dynamic analysis. Nonlinear and linear analyses are accomplished in order to establish this design procedure, and consequently the final design procedure is proposed as a strategy requiring only linear structural analysis, while acceptance criteria of nonlinear analysis is implicitly satisfied.

Injection of Waste Plastics into the Blast Furnace and Its Effect on Furnace Conditions

  • Heo, Nam-Hwan;Baek, Chan-Yeong;Yim, Chang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.755-758
    • /
    • 2001
  • Most of the waste plastics are incinerated and landfilled now, leading to much environmental problems. The technology of injection into the blast furnace was developed as a useful recycling method of waste plastics, and applied to the actual operation in several ironmaking companies. We carried out the test operation to inject continuously the two kinds of waste plastics through four tuyeres of the Foundry blast furnace in POSCO by 130 ton of total amount. From this test operation, we analyzed the coke replacement ratio, the permeability, the heat load and other changes of furnace conditions with the injection of waste plastics into the blast furnace. Some trials based upon the theoretical approaches were applied to examine the efficiencies of blast furnace.

  • PDF