• Title/Summary/Keyword: blade mode

Search Result 120, Processing Time 0.026 seconds

Flow Analysis around Tilt-rotor Aircraft at Various Tilt Angles (틸트각 변화에 따른 틸트로터 항공기 주위의 유동해석)

  • Kim, Su-Yean;Choi, Jong-Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.40-47
    • /
    • 2011
  • Tilt-rotor aircraft can be used in various fields because they have the capabilities of the vertical take-off and landing and the high-speed cruise flight. In the present study, the flow analysis of a tilt-rotor aircraft is conducted at various tilt angles. The lift and drag forces of the tilt-rotor aircraft are obtained and the wakes by the rotor-blade are visualized. The result shows that the rotor-blade affects the lift force in a hovering mode and the main wing has an influence on the lift force in a cruise mode. Additional thrust is required at the tilt angle of around 40 degree due to the least lift force. The drag force is dependent on the rotor-blade at overall tilt angles. The minus drag force appears between the tilt angles of 90 degree and 55 degree. Also, the drag force is dramatically increased at the other tilt angles. The wake by rotor-blade affects the flow around the fuselage of the tilt-rotor aircraft at the tilt angles of 75 degree and 60 degree.

Vibration Mode Characteristics on a Propeller in very Large Vessel (대형선박의 추진기 진동 모우드 특성)

  • Kim J.H.;Cho D.S.;Han S.Y.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.97-106
    • /
    • 2005
  • According to the trends of construction of large size vessel with high power the natural frequencies of the bending modes of propeller blades have been lower than the past. Therefore, it is expected that the noise and vibration problems of the marine propeller are frequently occurred. As main issue of the propeller noise and vibration problem, the cavitation noise and singing noise due to the flow induced excitation of the bending modes of propeller blade in the high frequency range has been studied by the hydrodynamic researchers in the view point of the excitation force reduction. In this paper, the vibration mode characteristics of propeller with a large diameter in very large vessel are investigated by the vibration analysis of the finite element method using MSC/Nastran and the vibration measurement by the impact test on the propeller blade. According to the results, the natural frequencies of various blade bending modes in water entrained condition could be estimated from the natural frequencies taken by the measurement and free vibration analysis in the dry condition, and it could be estimated how the high frequency noise such as singing is generated from the blade bending modes.

  • PDF

Aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structure in yaw condition

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1021-1040
    • /
    • 2015
  • An effective method to calculate aerodynamic loads and aeroelastic responses of large wind turbine tower-blade coupled structures in yaw condition is proposed. By a case study on a 5 MW large wind turbine, the finite element model of the wind turbine tower-blade coupled structure is established to obtain the modal information. The harmonic superposition method and modified blade-element momentum theory are used to calculate aerodynamic loads in yaw condition, in which the wind shear, tower shadow, tower-blade modal and aerodynamic interactions, and rotational effects are fully taken into account. The mode superposition method is used to calculate kinetic equation of wind turbine tower-blade coupled structure in time domain. The induced velocity and dynamic loads are updated through iterative loop, and the aeroelastic responses of large wind turbine tower-blade coupled system are then obtained. For completeness, the yaw effect and aeroelastic effect on aerodynamic loads and wind-induced responses are discussed in detail based on the calculating results.

Vibration analysis of a pretwisted rotating blade with a concentrated mass (집중질량과 초기 비틀림각을 갖는 회전블레이드의 진동해석)

  • Kwak, Joo-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.190-197
    • /
    • 1998
  • Equations of motions of a pretwisted rotating blade with a concentrated mass in an arbitrary position are derived. The flapwise and chordwise equations are coupled to each other due to the pretwist angle of the blade. As the angular speed, hub radius ratio, pretwist angle and concentrated mass vary, the vibration characteristics of the blade change. It is found that eigenvalue lociveering phenomena occur between two closing loci due to the pretwist angle. The effect of the pretwist angle on the critical angular speed and location of the concentrated mass on the natural frequencies are also investigated.

Design of Unequally-Spaced Blade Arrangement for Tonal Noise Reduction (순음성 소음의 분산을 위한 부등간격 블레이드 설계 연구)

  • Kim, Wan-Gi;Yun, Jong-Hak;Han, Seong-Su;Jeon, Se-Jong;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.1047-1054
    • /
    • 2000
  • A numerical simulation was made to delineate the re-distribution of tonal noise generated from the equally-spaced blade passing frequency (BPF). A pressure-wave model was employed to analyze the tonal noise. An optimal solution for diversifying the tonal peak noise was obtained by rearranging the unequally-spaced blade angles. This was based on the fact that the noise energy is transferred from BPF to the neighboring frequency band. A limit condition for the minimum blade angle spacing was imposed. The unbalancing problem was also considered to avoid the weight bias.

Aeroelastic Phenomena of a Wind Turbine Rotor Blade (풍력발전기 로터 블레이드의 공력탄성학적 현상)

  • Bae, jae-Sung;Hwang, Jai-Hyuk;Ju, Young-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • Aeroelastic phenomena of a wind turbine include stall-induced vibrations and classical flutters. The classical flutter occurs due to coalescence between bending mode and torsion mode. It is typically the aeroelastic instability of an aircraft wing. Different from the classical flutter, the stall-induced vibration is the instability in lead-lag mode due to negative aerodynamic dampings. In the present study, the three degree of freedom aeroelastic model of a wind turbine blade is introduced to characterize and analyze its aeroelastic phenomena. The numerical results show that the aeroelastic stability of flap-lag motion is more unstable than that of flap-pitch motion and the aeroelastic characteristics of lead-lag motion can become unstable as wind speed increases.

A Study on the Flame Pattern and the Electrical Properties of Electric Outlet Fired at Standby Mode (Standby Mode에서 출화된 콘센트의 화염 패턴 및 전기적 특성에 관한 연구)

  • 최충석;송길목;김형래;김향곤;김동욱;김동우
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • In this paper, we analysed the flame patterns and the electrical characteristics of the electric outlet which was fired at standby mode. The carbonized patterns indicated that the flame had spread about 50 cm to 70 cm. After the combustibles on wall started to burn, the temperature went up to about $300^{\circ}c$ in 150 sec. The flame formed ceiling jet and spread quickly. The tracking was generated at the shortest distance between two electrodes and the resistance was about 100$\Omega$ to 300$\Omega$ As the result of analysis using metallurgical microscope, the normal part of a blade holder showed amorphous structure, but the melted part of a blade holder damaged by tracking showed dendrite structure and void evenly. When the blade holder of damaged outlet was analyzed by SEM and EDX, we found that the structure and components of the normal part were different from those of melted part.

A Study on User Identity according to MMORPG's Narrative Mode Focused on and (MMORPG의 서사 양식 전환에 따른 사용자 정체성 연구 <블레이드 앤 소울>과 <다크폴> 분석을 중심으로)

  • Yun, Hye-Young;Kim, Jeong-Yeon
    • Journal of Korea Game Society
    • /
    • v.15 no.1
    • /
    • pp.45-54
    • /
    • 2015
  • This study analyzes the change of MMORPG in terms of conversion of narrative mode and discusses user identity according to the narrative mode, focused on and . These two games represent the conversion of narrative mode from Romance which has ideal story for it's main plot, to Irony, which has no background story. This change leads players to have performative persona composed by player's personal motive, compared to the persona composed by narrative motive.

A Study on the Coupled Shaft-Torsional and Blade-Bending Vibrations in the Flexible Rotor-Coupling-Blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Lee, Sun-Sook;Oh, Byung-Young;Yoon, Hyung-Won;Cha, Seog-Ju;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.221-226
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system is developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility is lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations is employed for developing the equation of the motion. The assumed modes method is used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearif, stiffness hardening and softening.

  • PDF

A Study on the Coupled Shaft-torsional and Blade-bending Vibrations in the Flexible Rotor-coupling-blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Oh, Byung-Young;Lee, Sun-Sook;Yoon, Hyungwon;Cha, Seog-Ju;Na, Sungsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1023-1029
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system was developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility was lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations was employed for developing the equation of the motion. The Assumed Modes Method was used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearity, stiffness hardening and softening.