• 제목/요약/키워드: blade design

검색결과 1,132건 처리시간 0.028초

배기용 Fan Scroll에 대한 연구 (A Study on the Fan and Scroll for Ventilation)

  • 송성배;박성일;이준세
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.402-406
    • /
    • 2000
  • In the Over-The-Range, the outlet size is limited by the industrial standards. Therefor to enlarge the volume of cavity, the installation height of ventilation fan is become small, the system resistance is higher than before. For that reason, the important design variables such as the diameter of a fan, the scroll expansion angle, etc. which play the significant role on flow rate and noise, are confined. In this study, we made an experiment of the diameter of fans relation to scroll expansion angle and investigated flow rate of the length of fans in enlarged cavity volume of OTR, and then we designed the new scroll to improve the flow rate and noise level. As a result, flow rate increased to 110% compared to current scroll and the blade passing frequency of a fan is disappeared by inclined cut-off shapes.

  • PDF

관통유동 해석 방법을 이용한 축류형 홴의 소음예측 (The Prediction of the Axial Flow Fan Noise by Using Through-Flow Analysis Method)

  • 이찬;정동규;홍순성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.371-379
    • /
    • 2000
  • A noise prediction method of axial flow fan is developed by incorporating through-flow method and vortex shedding noise model. Fan noise is assumed to be generated due to the pressure fluctuation induced by wake vortices of fan blades and radiate as diploe distribution. The wake vortices are analyzed by combining Karman vortex street model and through-flow analysis results, and the vortex-induced fluctuating pressure on blade surface is calculated by thin airfoil theory. The predicted sound pressure levels and directivity patterns of fan noise by the present method are favorably compared with fan noise test data. Furthermore, the present method is shown to be very useful for predicting the aero-acoustic performance map of the fan operated at off-design point.

  • PDF

Effects of Various Baffle Designs on Acoustic Characteristics in Combustion Chamber of Liquid Rocket Engine

  • Sohn, Chae-Hoon;Kim, Seong-Ku;Kim, Young-Mog
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.145-152
    • /
    • 2004
  • Effects of various baffle designs on acoustic characteristics in combustion chamber are numerically investigated by adopting linear acoustic analysis. A hub-blade configuration with five blades is selected as a candidate baffle and five variants of baffles with various specifications are designed depending on baffle height and hub position. As damping parameters, natural-frequency shift and damping factor are considered and the damping capacity of various baffle designs is evaluated. Increase in baffle height results in more damping capacity and the hub position affects appreciably the damping of the first radial resonant mode. Depending on baffle height, two close resonant modes could be overlapped and thereby the damping factor for one resonant mode is increased exceedingly. The present procedure based on acoustic analysis is expected to be a useful tool to predict acoustic field in combustion chamber and to design the passive control devices such as baffle and acoustic resonator.

Decanter형 원심분리기의 동력 계산 (I) - 슬러지 제거동력 - (Analysis of the Power for a Decanter-Type Centrifuge (I) - Sludge-Removal Power -)

  • 서용권
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.929-937
    • /
    • 2003
  • In general, the electric motor for driving the centrifuge of Decanter type is selected based on the power(starting power) necessary to start the bowl and the screw shaft. However the operation cost of the machine is dependent on the power needed at a steadily operating condition, including the power against the bearing friction and that for the sludge removal. In this paper, the formulation for the sludge-removal power is presented. Sample calculation for a specific design shows that the sludge-removal power is increased with the friction coefficient. It also reveals that the power is mainly dependent on the length of the screw blade rather than the beach angle. Further it is shown that the power increases in square of the rotational speed of the machine.

풍력 터빈 허브의 피로강도 평가 (Fatigue Strength Evaluation of Wind Turbine Hub)

  • 이현주;고장욱;오시덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1033-1038
    • /
    • 2003
  • A wind turbine obtains its power input by converting the force of the wind into a torque (turning force) acting on the rotor blades. The amount of energy which the wind transfers to the rotor depends on the density of the air, the rotor area, and the wind speed. Because it has long term operating life and very complex load condition, the fatigue strength of each component must be considered. In this paper, we calculated the load condition by wind using a combined blade elemental theory and a FEM based analytical approach was use to evaluate the fatigue strength of a Hub of wind turbine. The effect of tensile mean stress was taken into account by the modified Goodman diagram. Using this approaches, we evaluated the fatigue strength of hub and main shaft and improved the design.

  • PDF

Effect of The Impeller Discharge Angle on the Performance of a Spurt Vacuum Pump

  • Lee, Ji-Gu;Kim, Youn-Jea
    • Applied Science and Convergence Technology
    • /
    • 제26권1호
    • /
    • pp.1-5
    • /
    • 2017
  • The spurt vacuum pump is widely used to transfer sludge and slurry, and to control flow rate in a variety of processing fields, such as the oil, chemical, and fiber industries. The efficiency of the pump depends on the design parameters of the impeller, such as the number of blades, and the blade angle. In this study, the effect of the configuration of the impeller discharge angle of a spurt vacuum pump, which influences total head, shaft power, and efficiency, was numerically investigated using the commercial code, ANSYS CFX ver. 16.1. In addition, the performance of the pump was evaluated on the basis of the correlations between the total head, pump efficiency, and pressure distribution.

레인지 후드용 시로코 홴 성능 특성에 관한 연구 (A Study on the Performance Characteristics of the Sirocco Fan in a Range Hood)

  • 박상태;최영석;박문수;김철호;권오명
    • 한국유체기계학회 논문집
    • /
    • 제8권2호
    • /
    • pp.9-15
    • /
    • 2005
  • This paper presents an experimental and numerical study on the overall performance and local flow characteristics of sirocco fan in a range hood. Measurement of overall performance for sirocco fans were conducted based on AMCA standard 210. The effects of flow blockages due to the motor inside the fan on the fan performance were investigated by experimentally and numerically and the results were compared with each other. The numerical and experimental results show the inlet flow blockage reduces the performance (ie. fan static pressure, design flow rate, maximum efficiency and free delivery flow rate) of fan. It is found that the blockage makes the flow field highly non-uniform through the blade and cause the efficiency decrement.

저소음 고효율 시로코 팬 개발에 관한 연구 (A study on low-noise and high-efficiency sirocco fan development)

  • 박광진;이상환;손병진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 강연회 및 연구개발 발표회 논문집
    • /
    • pp.63-72
    • /
    • 1998
  • This study Is on the performance prediction and design of sirocco fan. Slip coefficient is very important factor for the performance analysis of centrifugal-type fan. Because generally used slip coefficient equations of backward curved centrifugal fan are not appropriate for forward curved sirocco fan, in this study a proper slip coefficient equation for sirocco fan is suggested. Using this equation performance prediction program for sirocco fan is composed and also included the total noise prediction that include turbulent noise at the fan Inlet and boundary layer noise. A comparison between the values obtained from performance prediction program and experimental values shows that the program predicts the sirocco fan performance in a practical rate.

  • PDF

750kW 풍력발전기 타워 구조의 진동 특성 (Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator)

  • 김석현;남윤수;은성용
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.219-224
    • /
    • 2005
  • Vibration response of the tower structure of a 750kW wind turbine (W/T) generator is investigated by measurement and analysis. Acceleration response of the W/T tower under various operation condition is monitored in real time by the vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the W/T tower.

슬롯을 갖는 회전 원판의 주파수 수렴 현상에 대한 연구 (A Study on the Frequency Convergence Phenomenon in a Rotating Circular Plate with Slots)

  • 황성택;김성진;유정훈;이승엽
    • 한국소음진동공학회논문집
    • /
    • 제20권12호
    • /
    • pp.1153-1160
    • /
    • 2010
  • A circular plate is the main part of a circular saw blade, which is widely used in industrial cutting tools. In experiments using a circular saw containing slots, we observed that a number of natural frequencies are simultaneously emerged in specific frequency regions. The interesting phenomenon is called the frequency convergence. Effects of design parameters such as the number, the length and the width of slots, on the frequency-convergence phenomenon are analyzed by FEM simulations using ALGOR. The frequency-convergence phenomenon will be intensified when the number, length and width of slots increase.