• Title/Summary/Keyword: blade defect

Search Result 25, Processing Time 0.027 seconds

Internal Defect Minimization of Die Cast Impeller Blade Using Taguchi's Design of Experiment (다구치 실험계획법을 이용한 임펠러 블레이드 다이캐스팅의 내부 결함 최소화)

  • Kim, D.;Choo, I.H.;Lee, Y.S.;Kim, S.W.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.173-178
    • /
    • 2010
  • A die cast impeller blade has been developed in the effort on cost reduction in marine equipment industry. The purpose of this work is to optimize the die casting process using Taguchi's design of experiment for minimizing the internal defect of the die cast impeller blade. The experiments were preformed using the numerical simulation based on the L18 orthogonal array. As a results, the internal defect size of the die cast impeller blade for optimal design was controlled less than 1mm.

Defect Monitoring of a Wind Turbine Blade Surface by using Surface Wave Damping (표면파 기반의 풍력발전기 블레이드 표면상태 실시간 모니터링에 관한 연구)

  • Kim, Kyung-Hwan;Yang, Young-Jin;Kim, Hyun-Bum;Yang, Hyung-Chan;Lim, Jong-Hwan;Choi, Kyung-Hyun
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.90-94
    • /
    • 2017
  • These days much efforts are being dedicated to wind power as a potential source of renewable energy. To maintain effective and uniform generation of energy, defect preservation of turbine blade is essential because it directly takes effects on the efficiency of power generation. For the effective maintenance, early measurements of blade defects are very important. However, current technologies such as ultrasonic waves and thermal imaging inspection methods are not suitable because of long inspection time and non-real time inspection. To supplement the problems, the study introduced a method for real time defect monitoring of a blade surface based on surface wave technology. We examined the effect of various parameters such as micro-cracks and peelings on the propagation of surface wave.

Structural Analysis of Composite Wind Blade Using Finite Element Technique (유한요소기법을 이용한 복합재 풍력 블레이드 구조해석)

  • Unseong Kim;Kyeongryeol Park;Seongmin Kang;Yong Seok Choi;Kyungeun Jeong;Soomin Lee;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.40 no.4
    • /
    • pp.133-138
    • /
    • 2024
  • This study evaluates the structural safety of wind turbine blades, analyzes the behavior of composite laminate structures with and without defects, and assesses surface erosion wear. The NREL 5 MW standard is applied to assign accurate composite material properties to each blade section. Modeling and analysis of the wind turbine blades reveal stable behavior under individual load conditions (gravity, motor speed, wind speed), with the web bearing most of the load. Surface erosion wear analysis in which microparticle impacts are simulated on the blade coating shows a maximum stress and maximum displacement of 14 MPa and 0.02 mm, respectively, indicating good initial durability, but suggest potential long-term performance issues due to cumulative effects. The study examines defect effects on composite laminate structures to compare the stress distribution, strain, and stiffness characteristics between normal and cracked states. Although normal conditions exhibit stable behavior, crack defects lead to fiber breakage, high-stress concentration in the vulnerable resin layer, and decreased rigidity. This demonstrates that local defects can compromise the safety of the entire structure. The study utilizes finite element analysis to simulate various load scenarios and defect conditions. Results show that even minor defects can significantly alter stress distributions and potentially lead to catastrophic failure if left unaddressed. These findings provide valuable insights for wind turbine blade safety evaluations, surface protection strategies, and composite structure health management. The methodology and results can inform the design improvements, maintenance strategies, and defect detection techniques of the wind energy industry.

A Study on Reliability Validation by Infrared Thermography of Composite Material Blade for Wind Turbine Generator (풍력발전용 복합소재 블레이드의 적외선 열화상 검사를 이용한 신뢰성 검증)

  • Kang, Byung Kwon;Nam, Mun Ho;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.176-181
    • /
    • 2014
  • In these days, new and renewable energy is getting popular around globe and wind power generator is one of the renewable energy. In this study, we conducted a study on defect detection of composite material blade for wind power generator by applying active infrared thermography and produced a defect test piece by applying composite material used for blade of wind power generator. An infrared thermal camera and 2 kW halogen lamp are used for the purpose of research as equipments. Also, we analyzed temperature characteristic by using infrared thermal camera after checking a heat source on a test piece and found effectiveness of infrared thermography to blade of wind power generator by detecting defects resulting from temperature difference of a test piece, which eventually improve the safety and reliability of the composite material blade.

Unsteady Flow Fields in a Rotor Blade Passage by Wake Passing (회전익 채널내 후류장에 의한 비정상 유동특성에 관한 연구)

  • Kim, Youn J.;Jeon, Y.-R
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.4 s.5
    • /
    • pp.16-23
    • /
    • 1999
  • The characteristic of unsteady flowfields on gas turbine, particularly on a rotor blade surface has been numerically investigated. The unsteady flow in a rotor blade passage as a result of wake/blade interaction is modeled by the inviscid flow approach, and solved by Euler equations using a time accurate marching scheme. Unsteady flow in the blade passage is induced by periodically moving a wake model across the passage inlet. The wake model used in this study is the Gaussian wate model in which the wake flow is assumed to be parallel with uniform static pressure and uniform relative total enthalpy. Numerical results show that for the case of Ps/Pr=1.5, the velocity and pressure distribution on the blade surfaces have much more complex profiles than for the case of Ps/Pr=1.0.

  • PDF

Study of the Effects of Wakes on Cascade Flow (후류가 익렬 유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyung-Joo;Cho, Kang-Rae;Joo, Won-Gu
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.561-567
    • /
    • 2000
  • This paper is concerned with the viscous interaction between rotor and stator. The viscous interaction is caused by wakes from upstream blades. The rotor cascade in the experiment was composed with five blades, and cylinders were placed to make the stator wakes and their locations were about 50 percent upstream of blade chord. The locations of cylinders were varied in the direction of cascade axis with 0, 12.5, 25, 50, and 75 percent of pitch length. The static pressure distributions on the blade surfaces and the velocity distributions in the cascade flow were measured. From the experimental result it was found that the value of velocity defect by a cylinder wake might vary depending on the wake position within the cascade but the value at the cascade exit approached to some constant value regardless of the difference of wake locus. The momentum defect at the downstream from the cascade and the pressure distribution on the blade surfaces showed that the wake flowing near the blade surfaces caused the decrease of lift and the increase of drag regardless of the disappearance of flow separation.

  • PDF

Development of Crack Detecting Method at Steam Turbine Blade Root Finger using Ultrasonic Test (초음파탐상 검사를 이용한 증기터빈 블레이드 루트 휭거 균열 탐지기법 개발)

  • Yun, Wan-No;Kim, Jun-Sung;Kang, Myung-Soo;Kim, Duk-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.738-744
    • /
    • 2011
  • The reliability of blade root fixing section is required to endure the centrifugal force and vibration stress for the last stage blade of steam turbine in thermal power plant. Most of the domestic steam turbine last stage blades have finger type roots. The finger type blade is very complex, so the inspection had been performed only on the exposed fixing pin cross-section area due to the difficulty of inspection. But the centrifugal force and vibration stress are also applied at the blade root finger and the crack generates, so the inspection method for finger section is necessary. For the inspection of root finger, inspection points were decided by simulating ultra-sonic path with 3D modeling, curve-shape probe and fixing jig were invented, and the characteristics analysis method of ultrasonic reflection signal and defect signal disposition method were invented. This invented method was actually executed at site and prevented the blade liberation failure by detecting the cracks at the fingers. Also, the same type blades of the other turbines were inspected periodically and the reliability of the turbine increased.

A Study on Failure Rate Prediction of Aircraft Gas Turbine Engine Turbine Blade (항공기 가스터빈엔진 터빈블레이드의 고장률 예측에 관한 연구)

  • Kim, Chun-Yong;Choi, Se-Jong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.4
    • /
    • pp.21-26
    • /
    • 2019
  • The purpose of this study is to suggest a method for the efficient preventive maintenance of aircraft gas turbine engine turbine blades. For this study, the types and characteristics of gas turbine engines and its turbine blades were studied, the turbine blade defect types that caused an In-Flight Shut Down(IFSD) were analyzed, the blade failure rate according to the blade life cycle was analyzed through the Weibull distribution, one of the statistical techniques. Through these research results, it is possible to supplement the problems of the life cycle management and maintenance method of the turbine blade, and to suggest the measures to strengthen the preventive maintenance of the turbine blade. In this analysis, when total cycle of turbine blade exceeds 18,000 cycles, the failure rate is over 98%, and then the special management measures are required.

Reliability Evaluation of Constant Pressure Mechanism on Phased Array Ultrasonic Testing for Wind Turbine Blade (위상배열 탐상검사법을 이용한 풍력발전용 블레이드의 일정가압 메커니즘 신뢰성 평가)

  • Nam, Mun Ho;Chi, Su Chung;Lim, Sun;Lim, Seung Hwan;Jeong, Ye Chan
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.236-245
    • /
    • 2017
  • Purpose: There is no established inspection system for composite wind blade during the fabrication stage even though the blades are one of the most important part at wind generation system, but phased array ultrasonic testing method has been continuously studied about wind turbine blade with composite. When wind turbine blade with complex shape by phased array probe is inspected, it is necessary to study for system keeping constant pressure using pressure device. Methods: In this paper, we propose constant pressure device for inspecting wind turbine blade by phased array ultrasonic test method. Design of the device controller is based on Hunt-Crossley model. We evaluate reliability of phased array ultrasonic inspection result that applicated constant pressure device. Result: Defect indication is precise and its error is small when constant pressure mechanism based on Hunt-Crossley model was used. Conclusion: When inspection is progressed using constant pressure mechanism, the reliability of composite wind blade inspection can be improved.

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.