• Title/Summary/Keyword: black rot disease

Search Result 102, Processing Time 0.023 seconds

Potential Biological Control of Orobanche by Fungi Isolated from Diseased Specimens in Jordan

  • K. M. Hameed;I. M. Saadoun;Shyab, Zaineb-Al
    • The Plant Pathology Journal
    • /
    • v.17 no.5
    • /
    • pp.257-263
    • /
    • 2001
  • Species of the genus Orobanche are parasitic flowering plants, holoparasites, which cling to the roots of green plants. Their tiny seeds (200 x $250\mu\textrm{m}$) germinate in response to chemical stimuli produced by host and some non-host plants. Successful contact with their host leads to development of haustoria for obtaining water and food. The shoots above the ground expose flowers and disseminate seeds. Several samples of Orobanche ramosa, O. crenata, O. cernua, and O. egyptiaca were collected from different localities in Jordan. These samples showed one of the following disease symptoms: dry rot at the base of the stem; general deterioration and expanded lesion from base upward; soft tissue maceration of stem; and black rot of flower parts with incomplete maturation of the ovary and seeds. Isolation from diseased stems and seeds was made on three different mycological media. Several fungi were isolated, mainly, Fusarium spp., Alternaria alternata, Rhizoctonia sp., Dendrophora sp., Chaetomium sp., and an ascomycetus fungus with a perithecium. Pathogenicity tests showed that Fusarium spp. and Alternaria alternata attacked healthy living tissue of Orobanche spikes. These fungi caused lesions of black soft rot and complete deterioration within 5-7 days. They also attacked Orobanche seeds, arresting their germination and causing maceration of non-germinated and germinated seeds after 5-7 days of incubation. Meanwhile, Dendrophora sp. and Chaetomium sp. caused limited lesion at first, but were able to colonize the tissue as it aged and senesced. This study showed the presence of a potential endogenous pathogenic fungi in Jordan, which can be investigated as a biological control for Orobanche.

  • PDF

Biocontrol of Orchid-pathogenic Mold, Phytophthora palmivora, by Antifungal Proteins from Pseudomonas aeruginosa RS1

  • Sowanpreecha, Rapeewan;Rerngsamran, Panan
    • Mycobiology
    • /
    • v.46 no.2
    • /
    • pp.129-137
    • /
    • 2018
  • Black rot disease in orchids is caused by the water mold Phytophthora palmivora. To gain better biocontrol performance, several factors affecting growth and antifungal substance production by Pseudomonas aeruginosa RS1 were verified. These factors include type and pH of media, temperature, and time for antifungal production. The results showed that the best conditions for P. aeruginosa RS1 to produce the active compounds was cultivating the bacteria in Luria-Bertani medium at pH 7.0 for 21 h at $37^{\circ}C$. The culture filtrate was subjected to stepwise ammonium sulfate precipitation. The precipitated proteins from the 40% to 80% fraction showed antifungal activity and were further purified by column chromatography. The eluted proteins from fractions 9-10 and 33-34 had the highest antifungal activity at about 75% and 82% inhibition, respectively. SDS-PAGE revealed that the 9-10 fraction contained mixed proteins with molecular weights of 54 kDa, 32 kDa, and 20 kDa, while the 33-34 fraction contained mixed proteins with molecular weights of 40 kDa, 32 kDa, and 29 kDa. Each band of the proteins was analyzed by LC/MS to identify the protein. The result from Spectrum Modeler indicated that these proteins were closed similarly to three groups of the following proteins; catalase, chitin binding protein, and protease. Morphological study under scanning electron microscopy demonstrated that the partially purified proteins from P. aeruginosa RS1 caused abnormal growth and hypha elongation in P. palmivora. The bacteria and/or these proteins may be useful for controlling black rot disease caused by P. palmivora in orchid orchards.

Effect of Temperature and Shading on the Growth and Major Disease Incidence of Wasabi(Eutrema wasabi Matsum.) (온도 및 차광이 고추냉이의 생장과 주요 병해발생에 미치는 영향)

  • 김형무;은종선;나의식
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.240-245
    • /
    • 1995
  • In order to find out the effect of temperature and shading on the growth and major disease infection of Eutrema wasabi Matsum., experiments were at growth chamber condition and field. Plant height, petiole and rhizome of wasabi were obvious decreased with increase the temperature, from which the optimum air temperature for the plant growth were estimated to be 17$^{\circ}C$. The light intensity of the treatment with 75% shading net was favorable to the length of main rhizome, rhizome weight and whole plant weight. Infection ratio of black leg and soft rot were increased at high temperature condition, however their infection ratio were decreased with increase the shading condition.

  • PDF

Antifungal Activity of Green and Chemically Synthesized ZnO Nanoparticles against Alternaria citri, the Causal Agent Citrus Black Rot

  • Hazem S. Elshafie;Ali Osman;Mahmoud M El-Saber;Ippolito Camele ;Entsar Abbas
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.265-274
    • /
    • 2023
  • Citrus black rot is a serious disease of citrus plants caused by Alternaria citri. The current study aimed to synthesize zinc oxide nanoparticles (ZnO-NPs) by chemically or green method and investigate their antifungal activity against A. citri. The sizes of synthesized as measured by transmission electron microscope of ZnO-NPs were 88 and 65 nm for chemical and green methods, respectively. The studied prepared ZnO-NPs were applied, in vitro and in situ, at different concentrations (500, 1,000, and 2,000 ㎍/ml) in post-harvest treatment on navel orange fruits to verify the possible control effect against A. citri. Results of in vitro assay demonstrated that, at concentration 2,000 ㎍/ml, the green ZnO-NPs was able to inhibit about 61% of the fungal growth followed by 52% of chemical ZnO-NPs. In addition, scanning electron microscopy of A. citri treated in vitro with green ZnO-NPs showed swelling and deformation of conidia. Results showed also that, using a chemically and green ZnO-NPs at 2,000 ㎍/ml in situ in post-harvest treatment of orange, artificially-infected with A. citri, has reduced the disease severity to 6.92% and 9.23%, respectively, compared to 23.84% of positive control (non-treated fruits) after 20 days of storage. The out findings of this study may contribute to the development of a natural, effective, and eco-friendly strategy for eradicating harmful phytopathogenic fungi.

Occurrence of Soft Rot on Raspberry (Rubus crataegifolius) Caused by Rhizopus oryzae in Korea (Rhizopus oryzae에 의한 산딸기 무름병)

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;An, Jae-Uk;Choi, Ok-Hee;Kwak, Youn-Sig
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.396-398
    • /
    • 2011
  • Soft rot disease on Raspberry (Rubus crataegifolius Bunge) was observed in sale boxes at Jinju City Wholesale Market of Agricultural Products in June 2010. The infected fruits were rapidly water-soaked, softened, black and eventually rotted. The colonies on the infected fruits were white to light brown, formed numerous sporangiospores. Optimum temperature for the mycelial growth of the causal fungus on PDA was $30^{\circ}C$ and growth was still apparent at $37^{\circ}C$. Sporangia were globose, white at early and gradually to black, and 40-210 ${\mu}m$ in diameter. Sporangiophores were white to mid brown as maturation and 8-20 ${\mu}m$ in diameter. Columella were globose to sub-globose, and the size of the diameter was 85-120 ${\mu}m$ in diameter. Sporangiospores were sub-globose, rhomboidal and irregular, streaked and 5-10 ${\mu}m$ in length. On the basis of symptom, mycological characteristics, ITS rDNA sequence analysis, and pathogenicity of the fungus, the causal fungus was clearly identified as Rhizopus oryzae Went & Prinsen Geerligs. This is the first report of soft rot by R. oryzae on R. crataegifolius in Korea.

Biological Control of Perilla Sclerotinia Rot Caused by Sclerotinia sclerotiorum Using Bacillus megaterium N4. (Bacillus megaterium N4에 의한 들깨 균핵병 (Sclerotinia sclerotiorum)의 생물학적 방제)

  • 문병주;김현주;송주희;이광열;백정우;정순재
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.761-769
    • /
    • 2004
  • This study was investigated the occurrence of sclerotinia rot caused by Sclerotinia sclerotiorum at the major perilla cultivating area, Gangdong-dong, Gangseo-gu, Busan in 1998. The incidence of this disease ranged from 8.1 to 28.3% at Gangdong-dong area during the growing seasons. Symptoms of the disease initially appeared damping-off of infected stems and soft-rot on the leaves of perilla. Under the relatively high humidity, abundant white mycelia of the pathogen formed on the lesion developed into black sclerotia later and the infected leaves were finally fell down. Sixteen isolates, Sl-S16, isolated from diseased lesions showing typical symptoms, and pathogenicity was tested using mycerlial disks. Among them, S2 isolate showing the most strong pathogenicity was selected and identified as Sclerotinia sclerotiorum on the basis of morphological and cultural characteristics. For biological control, an antagonistic bacteria, N4 isolate which effectively inhibited not only mycelial growth of S2 isolate but also suppress sclerotinia rot on the pot assay, was selected and identified as Bacillus megaterium according to Bergey's manual and API system., Wettable powder type, N4 formulation using B. megaterium N4 isolate was developed and estimated its control effect on perilla crops in a plastic house. As a results, N4 formulation which applied before 3 days inoculation of pathogen was effectually controlled Sclerotinia rot as the control value of 98.0%, was more effective than chemical fungicide, benomyl showing the control value of 78.0%. This is the first report of wettable powder formulation as a biocontrol agent using B. megaterium N4 against Sclerotinia rot caused by S. sclerotiorum on perilla.

Sclerotinia Rot of Astragalus sinicus Caused by Sclerotinia trifoliorum (Sclerotinia trifoliorum에 의한 자운영 균핵병)

  • Kwon, Jin-Hyeuk;Lee, Heung-Su;Lee, Yong-Hwan;Shim, Hong-Sik
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.90-93
    • /
    • 2010
  • Sclerotinia rot occurred sporadically on the stems and leaves of Astragalus sinicus in the farmers fields at Goseong-gun, Gyeongnam province in Korea. The infected plants showed the typical symptoms: watersoaked, wilt, rot, blight and eventual death. The colony of the isolated fungus on potato-dextrose agar (PDA) was white to faintly gray color. Sclerotia formed on the PDA were globose in shape, black in color and $2{\sim}14{\times}2{\sim}7mm$ in size. The optimum temperature for mycelial growth and sclerotium formation was at $20^{\circ}C$ on PDA. Apothecia formed on PDA were globose~disk in shape and 3~8 mm in size. Asci were cylindrical in shape and $145{\sim}210{\times}10{\sim}12{\mu}m$ in size. Ascospores were ellipsoid and $10{\sim}14{\times}6{\sim}7{\mu}m$ in size. On the basis of mycological characteristics and pathogenicity test on host plants, the fungus was identified as Sclerotinia trifoliorum Eriksson. This is the first report on sclerotinia rot of A. sinicus caused by Strifoliorum Eriksson in Korea.

Occurrence of Sclerotinia Rot by Sclerotinia minor on Aster yomena in Korea (한국에서 Sclerotinia minor에 의한 쑥부쟁이 균핵병 발생)

  • Lee, Sang Yeob;Choi, Hyo-Won;Weon, Hang Yeon;Han, Ji Hee;Kim, Dayeon;Ahn, Sungho
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.200-204
    • /
    • 2018
  • Sclerotinia rot symptoms were frequently found on the stems of Aster yomena in the Gurye region of Korea in April 2016. The symptom, watery soft rot, mainly appeared on the stems, and severely infected plants blighted. White mycelia spread over the stems of the infected plants and the soil surface. Small black sclerotia formed on the plant lesions and inside the diseased stems. Incidence of the disease was as high as 20~80% in the A. yomena fields. Based on the morphological and molecular characteristics of the isolates, the fungi were identified as Sclerotinia minor. This is the first report of Sclerotinia rot caused by Sclerotinia minor on A. yomena in Korea.

Occurrence of Sclerotinia Rot of Crisphead Lettuce Caused by Sclerotinia sclerotiorum and Its Pathogenicity (Sclerotinia sclerotiorum에 의한 결구상추 균핵병(Sclerotinia rot)의 발생과 병원성)

  • Baek, Jung-Woo;Kim, Han-Woo;Kim, Hyun-Ju;Park, Jong-Young;Lee, Kwang-Youll;Lee, Jin-Woo;Jung, Soon-Je;Moon, Byung-Ju
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.324-330
    • /
    • 2004
  • This studies were investigated the occurrence of sclerotinia rot at the crisphead lettuce field in Uiryeong-Gun, Gyeongsangnam-Do from January to May in 2003. Average incidence rates of sclerotinia rot on crisphead lettuce was up to 21.9% at the five plastic houses. A total of 140 isolates of Sclerotinia sp. were obtained from diseased leaves of crisphead lettuce. Among them, the fungi YR-1 was isolated, which showed highly virulent on the whole plant. the YR-1 was identified as Sclerotinia sclerotiorum based on the formation, color, shape and size of sclerotium and apothecium. For the pathogenicity test, the most suitable inoculum quantity of YR-1 strain was selected as the triturated mycelial suspension of $A_{550}$=0.8, 40 ml showing disease incidence of 94%, and the symptom showed as same as at the fields, the leaves and stem had rotten and developed white downy mycelial at the diseased lesion on the leaves and stems, and produced black and irregular sclerotinia. This is the first report on the pathogenicity test using by triturated mycelial suspension-inoculum of the pathogen for the sclerotinia rot of crisphead lettuce.

First Report of Black Spot Caused by Alternaria alternata on Grafted Cactus

  • Choi, Min-Ok;Kim, Sang-Gyu;Hyun, Ik-Hwa;Kim, Jeong-Ho;Cho, Chang-Hui;Park, Myung-Soo;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.80-82
    • /
    • 2010
  • A stem spot disease was observed on Gymnocalycium mihanovichii (Korean name: Bimoran), a scion of graftcactus, in major growing areas of Goyang and Eumseong, Korea during 2008 and 2009. Typical symptoms were initial blackish brown lesions produced mainly on areoles and scars of injured stem tissues, gradually becoming large black spots. A causal organism isolate CD2-7A isolated from the infected stems was identified as Alternaria alternata based on its morphological characteristics and confirmed by the DNA sequencing analysis of ITS, glyceraldehydes-3-phosphate dehydrogenase (gpd), and allergen Alt a1 (Alt a 1) genes. Artificial inoculation of the fungal isolate CD2-7A produced the same rot symptoms on the cactus stems, from which the same fungus was isolated and identified. This is the first report of the black spot caused by A. alternata in the grafted cactus.