DOI QR코드

DOI QR Code

Biocontrol of Orchid-pathogenic Mold, Phytophthora palmivora, by Antifungal Proteins from Pseudomonas aeruginosa RS1

  • Received : 2018.02.06
  • Accepted : 2018.03.29
  • Published : 2018.06.01

Abstract

Black rot disease in orchids is caused by the water mold Phytophthora palmivora. To gain better biocontrol performance, several factors affecting growth and antifungal substance production by Pseudomonas aeruginosa RS1 were verified. These factors include type and pH of media, temperature, and time for antifungal production. The results showed that the best conditions for P. aeruginosa RS1 to produce the active compounds was cultivating the bacteria in Luria-Bertani medium at pH 7.0 for 21 h at $37^{\circ}C$. The culture filtrate was subjected to stepwise ammonium sulfate precipitation. The precipitated proteins from the 40% to 80% fraction showed antifungal activity and were further purified by column chromatography. The eluted proteins from fractions 9-10 and 33-34 had the highest antifungal activity at about 75% and 82% inhibition, respectively. SDS-PAGE revealed that the 9-10 fraction contained mixed proteins with molecular weights of 54 kDa, 32 kDa, and 20 kDa, while the 33-34 fraction contained mixed proteins with molecular weights of 40 kDa, 32 kDa, and 29 kDa. Each band of the proteins was analyzed by LC/MS to identify the protein. The result from Spectrum Modeler indicated that these proteins were closed similarly to three groups of the following proteins; catalase, chitin binding protein, and protease. Morphological study under scanning electron microscopy demonstrated that the partially purified proteins from P. aeruginosa RS1 caused abnormal growth and hypha elongation in P. palmivora. The bacteria and/or these proteins may be useful for controlling black rot disease caused by P. palmivora in orchid orchards.

Keywords

References

  1. Mauffret A, Baran N, Joulian C. Effect of pesticides and metabolites on groundwater bacterial community. Sci Total Environ. 2017;576:879-887. https://doi.org/10.1016/j.scitotenv.2016.10.108
  2. Aktar MW, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol. 2009;2:1-12. https://doi.org/10.2478/v10102-009-0001-7
  3. Martinez-Medina A, Del Mar Alguacil M, Pascual JA, et al. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol. 2014;40:804-815. https://doi.org/10.1007/s10886-014-0478-1
  4. DiTomaso JM, Van Steenwyk RA, Nowierski RM, et al. Addressing the needs for improving classical biological control programs in the USA. Biol Control. 2017;106:35-39. https://doi.org/10.1016/j.biocontrol.2016.12.005
  5. Velivelli SL, De Vos P, Kromann P, et al. Biological control agents: from field to market, problems, and challenges. Trends Biotechnol. 2014;32:493-496. https://doi.org/10.1016/j.tibtech.2014.07.002
  6. Aksoy HM, Kaya Y, Ozturk M, et al. Pseudomonas putida - induced response in phenolic profile of tomato seedlings (Solanum lycopersicum L.) infected by Clavibacter michiganensis subsp michiganensis. Biol Control. 2017;105:6-12. https://doi.org/10.1016/j.biocontrol.2016.11.001
  7. Law JW, Ser HL, Khan TM, et al. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol. 2017;8:3.
  8. Torres MJ, Perez Brandan C, Sabate DC, et al. Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. pathogens. Biol Control. 2017;105:93-99. https://doi.org/10.1016/j.biocontrol.2016.12.001
  9. Wang SL, Yieh TC, Shih IL. Production of antifungal compounds by Pseudomonas aeruginosa K-187 using shrimp and crab shell powder as a carbon source. Enzyme Microb Technol. 1999;25:142-148. https://doi.org/10.1016/S0141-0229(99)00024-1
  10. Botelho GR, Mendonca-Hagler LC. Fluorescent pseudomonads associated with the rhizosphere of crops - an overview. Braz J Microbiol. 2006;37:401-416. https://doi.org/10.1590/S1517-83822006000400001
  11. Guyer A, De Vrieze M, Bonisch D, et al. The anti-Phytophthora effect of selected potato-associated Pseudomonas strains: from the laboratory to the field. Front Microbiol. 2015;6:1309.
  12. Hunziker L, Bonisch D, Groenhagen U, et al. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol. 2015;81:821-830. https://doi.org/10.1128/AEM.02999-14
  13. Borah SN, Goswami D, Sarma HK, et al. Rhamnolipid biosurfactant against Fusarium verticillioides to control stalk and ear rot disease of maize. Front Microbiol. 2016;7:1505.
  14. Yang MM, Wen SS, Mavrodi DV, et al. Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07. Phytopathology. 2014;104:248-256. https://doi.org/10.1094/PHYTO-05-13-0142-R
  15. Wanga SL, Yieh TC, Shih IL. Purification and characterization of a new antifungal compound produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Enzyme Microb Technol. 1999;25:439-446. https://doi.org/10.1016/S0141-0229(99)00069-1
  16. Yen YH, Li PL, Wang CL, et al. An antifungal protease produced by Pseudomonas aeruginosa M-1001 with shrimp and crab shell powder as a carbon source. Enzyme Microb Technol. 2006;39:311-317. https://doi.org/10.1016/j.enzmictec.2005.11.050
  17. Hsiao YY, Pan ZJ, Hsu CC, et al. Research on orchid biology and biotechnology. Plant Cell Physiol. 2011;52:1467-1486. https://doi.org/10.1093/pcp/pcr100
  18. De LC, Pathak P, Rao AN, et al. 2 Global Orchid Industry. In: De LC, editor. Commercial Orchids. Berlin: De Gruyter Open; 2014. p. 13-19.
  19. Pizano M. International market trends - tropical flowers. Proceeding of the V International Symposium on New Floricultural Crops; 2003 Aug 26-30; Parana. International Society for Horticultural Science (ISHS), Leuven; 2003. p. 79-86.
  20. Moon H, Park HJ, Jeong A, et al. Isolation and identification of Burkholderia gladioli on Cymbidium orchids in Korea. Biotechnol Biotechnol Equip. 2016;31:280-288.
  21. Sudha DR, Rani GU. Detection, diagnosis of orchid virus and inactivation of cymbidium mosaic virus (CYMV) on plants. Int J Plant Sci. 2016;11:302-306. https://doi.org/10.15740/HAS/IJPS/11.2/302-306
  22. Li J, Wang R, Wang Z, et al. The phylogenetic relationship and non-specific symbiotic habit of mycorrhiza fungi from a terrestrial orchid (Cymbidium). Nord J Bot. 2016;34:343-348. https://doi.org/10.1111/njb.00935
  23. Maketon C, Tongjib Y, Patipong T, et al. Greenhouse evaluations of harpin protein and microbial fungicides in controlling Curvularia lunata, Fusarium moniliforme, and Phythopthora palmivora, major causes of orchid diseases in Thailand. Life Sci J. 2015;12:125-132.
  24. Streda T, Kredl Z, Pokorny R, et al. Effect of wetting period on infection of orchid flowers by Alternaria alternata and Curvularia eragrostidis. N Z J Crop Hortic Sci. 2013;41:1-8. https://doi.org/10.1080/01140671.2012.662905
  25. Laurence MH, Howard C, Summerell BA, et al. Identification of Fusarium solani f. sp. phalaenopsis in Australia. Australasian Plant Dis Notes. 2016;11:3. https://doi.org/10.1007/s13314-015-0188-8
  26. Meera T, Louis V, Beena S. Diseases of Phalaenopsis: symptoms, etiology and management. Int J Agric Res Innov Technol. 2016;5:296-300.
  27. Cating R, Palmateer A, Stiles C, et al. Black rot of orchids caused by Phytophthora cactorum and Phytophthora palmivora in Florida. Plant Health Progr. 2010 [cited June 14]. June 14. DOI:10.1094/PHP-2010-0614-01-DG
  28. Dooh JPN, Ambang Z, Bekolo N, et al. Effect of extracts of Thevetia peruviana on the development of Phytophthora megakarya causal agent of black pod disease of cocoa. J App Bioscience. 2014;77:6564-6574. https://doi.org/10.4314/jab.v77i1.11
  29. Laemmli UK, Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973;80:575-599. https://doi.org/10.1016/0022-2836(73)90198-8
  30. Behdani M, Pooyan M, Abbasi S. Evaluation of antifungal activity of some medicinal plants essential oils against Botrytis cinerea, causal agent of postharvest apple rot, in vitro. Intl J Agri Crop Sci. 2012;4:1012-1016.
  31. Valentine N, Wunschel S, Wunschel D, et al. Effect of culture conditions on microorganism identification by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Appl Environ Microbiol. 2005;71:58-64. https://doi.org/10.1128/AEM.71.1.58-64.2005
  32. Lee HA, Kim JH. Isolation of Bacillus amyloliquefaciens strains with antifungal activities from Meju. Prev Nutr Food Sci. 2012;17:64-70. https://doi.org/10.3746/pnf.2012.17.1.064
  33. Cummins PM, Dowling O, O'Connor BF. Ionexchange chromatography: basic principles and application to the partial purification of soluble mammalian prolyl oligopeptidase. Methods Mol Biol. 2011;681:215-228.
  34. Hegedus N, Marx F. Antifungal proteins: more than antimicrobials? Fungal Biol Rev. 2013;26:132-145. https://doi.org/10.1016/j.fbr.2012.07.002
  35. Ouedraogo JP, Hagen S, Spielvogel A, et al. Survival strategies of yeast and filamentous fungi against the antifungal protein AFP. J Biol Chem. 2011;286:13859-13868. https://doi.org/10.1074/jbc.M110.203588
  36. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci. 2004;61:192-208. https://doi.org/10.1007/s00018-003-3206-5
  37. Hou X, Boyetchko SM, Brkic M, et al. Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl Microbiol Biotechnol. 2006;72:644-653. https://doi.org/10.1007/s00253-006-0315-8
  38. Oda K. New families of carboxyl peptidases:serine-carboxyl peptidases and glutamic peptidases. J Biochem. 2012;151:13-25. https://doi.org/10.1093/jb/mvr129
  39. Luo Y, Sun L, Zhu Z, et al. Identification and characterization of an anti-fungi Fusarium oxysporum f. sp. cucumerium protease from the Bacillus subtilis strain N7. J Microbiol. 2013;51:359-366. https://doi.org/10.1007/s12275-013-2627-6
  40. Tokunaga J, Bartnicki-Garcia S. Structure and differentiation of the cell wall of Phytophthora palmivora: cysts, hyphae and sporangia. Archiv Fur Mikrobiologie. 1971;79:293-310. https://doi.org/10.1007/BF00424906
  41. Meijer HJ, van de Vondervoort PJ, Yin QY, et al. Identification of cell wall-associated proteins from Phytophthora ramorum. Mol Plant-Microbe Interact. 2006;19:1348-1358. https://doi.org/10.1094/MPMI-19-1348
  42. Folders J, Algra J, Roelofs MS, et al. Characterization of Pseudomonas aeruginosa chitinase, a gradually secreted protein. J Bacteriol. 2001;183:7044-7052. https://doi.org/10.1128/JB.183.24.7044-7052.2001
  43. Folders J, Tommassen J, van Loon LC, et al. Identification of a chitin-binding protein secreted by Pseudomonas aeruginosa. J Bacteriol. 2000;182:1257-1263. https://doi.org/10.1128/JB.182.5.1257-1263.2000
  44. Guerriero G, Avino M, Zhou Q, et al. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs. PLoS Pathog. 2010;6:e1001070. https://doi.org/10.1371/journal.ppat.1001070
  45. Kim YC, Jung H, Kim KY, et al. An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol. 2008;120:373-382. https://doi.org/10.1007/s10658-007-9227-4
  46. Arora NK, Kim MJ, Kang SC, et al. Role of chitinase and beta-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can J Microbiol. 2007;53:207-212. https://doi.org/10.1139/w06-119
  47. Paramanandham P, Rajkumari J, Pattnaik S, et al. Biocontrol potential against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and tomato plant growth due to plant growth-promoting rhizobacteria. Int J Veg Sci. 2017;23:294-303. https://doi.org/10.1080/19315260.2016.1271850
  48. Morales DK, Jacobs NJ, Rajamani S, et al. Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol. 2010;78:1379-1392. https://doi.org/10.1111/j.1365-2958.2010.07414.x
  49. Wang Y, Li C, Gao C, et al. Genome sequence of the nonpathogenic Pseudomonas aeruginosa strain ATCC 15442. Genome Announc. 2014;2:e00421-14.

Cited by

  1. Synthesis of chitosan biocomposites loaded with pyrrole-2-carboxylic acid and assessment of their antifungal activity against Aspergillus niger vol.103, pp.7, 2018, https://doi.org/10.1007/s00253-019-09670-w
  2. Biocontrol and Action Mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in Soybean Phytophthora Blight vol.20, pp.12, 2019, https://doi.org/10.3390/ijms20122908
  3. Antagonistic compounds from controversial bacteria with suppressing effects on the diseases caused by Phytophthora cinnamomi vol.53, pp.1, 2020, https://doi.org/10.1080/03235408.2020.1719007
  4. Biological control of Phytophthora blight by Pseudomonas protegens strain 14D5 vol.156, pp.2, 2018, https://doi.org/10.1007/s10658-019-01909-6
  5. Bacillus velezensis CE 100 Inhibits Root Rot Diseases (Phytophthora spp.) and Promotes Growth of Japanese Cypress (Chamaecyparis obtusa Endlicher) Seedlings vol.9, pp.4, 2021, https://doi.org/10.3390/microorganisms9040821