• Title/Summary/Keyword: black matrix

Search Result 167, Processing Time 0.024 seconds

Development and Validation of Analytical Method for Determination of Fungicide Spiroxamine Residue in Agricultural Commodities Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 Spiroxamine의 시험법 개발 및 검증)

  • Park, Shin-Min;Do, Jung-Ah;Lim, Seung-Hee;Yoon, Ji-Hye;Pak, Won-Min;Shin, Hye-Sun;Kuk, Ju-Hee;Chung, Hyung-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.4
    • /
    • pp.296-305
    • /
    • 2018
  • Spiroxamine, one of fungicides, is used to control powdery mildew in various crops and black yellow sigatoka in bananas. The major strength of spiroxamine is to control powdery mildew in various crops and bananas yellow sigatoka in bananas. The compound has shown a high level of activity, good persistence and crop tolerance. Besides powdery mildew, good control of rust, net blotch and Rhynchosporium diseases been indicated in cereals, together with a complementary activity against Septoria diseases. In 2017, the maximum residue limit (MRL) of spiroxamine established in Korea. According to Ministry of ood and rug afety) regulations, spiroxamine residues defined only parent compound. Thus, a analytical method is needed to estimate the residue level of the parent compound. The objective of this study was to develop and validate analytical method for spiroxamine in representative agricultural commodities. Samples were extracted with acetonitrile and partitioned with dichloromethane to remove the interfering substances. The analyte were quantified and confirmed liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive-ion mode using multiple reaction monitoring (MRM). Matrix matched calibration curves were linear over the calibration ranges ($0.0005{\sim}0.1{\mu}g/mL$) for the analyte in blank extract with coefficient of determination ($r^2$) > 0.99. For validation purposes, recovery studies will be carried out at three different concentration levels (LOQ, 10LOQ, and 50LOQ) performing five replicates at each level. The recoveries 70.6~104.6% with relative standard deviations (RSDs) less than 10%. All values were consistent with the criteria ranges in the Codex guidelines (CAC/GL40, 2003) and MFDS guidelines. proposed analytical method be used as an official analytical method in the Republic of Korea.

MMP-1 and TIMP-1 production in MG-63 cells stimulated with Prevotella nigrescens Lipopolysaccharide (Prevotella nigrescens lipopolysaccharides로 자극된 MG63 세포에서 분비되는 기질금속단백질 MMP-1과 TIMP-1의 수준에 관한 연구)

  • Yang Won-Kyung;Kim Mi-Ri;Shon Won-Jun;Lee In-Bog;Cho Byeong-Hoon;Um Chung-Moon;Son Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.5
    • /
    • pp.470-478
    • /
    • 2004
  • The purpose of this study is to monitor the secretion of matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) produced by human osteosarcoma cell line (MG63) stimulated with Prevotella nigrescens lipopolysaccharides (LPS). and to compare the level of secretion before and after the treatment of calcium hydroxide on P. nigrescens LPS. LPS was extracted and purified from anaerobically cultured P. nigrescens. MG63 cells were stimulated by the LPS (0, 1, $10{\;}\mu\textrm{g}/ml$) or LPS($10{\;}\mu\textrm{g}/ml$) pretreated with 12.5 mg/ml of $Ca(OH)_2$ for 3 days. Total RNA was isolated from the cell. and real-time quantitative polymerase chain reaction (PCR) was performed for quantification of MMP-1 and TIMP-1. The results were as follows. 1. MMP-1 mRNA expression at 48 hr was highly increased by stimulation with P. nigrescens LPS. The increase was dose-dependent. 2. When stimulated with ($1{\;}\mu\textrm{g}/ml$ of LPS. TIMP-1 mRNA expression was highly increased at 24 hr and 48 hr. However. TIMP-1 expression was suppressed at higher concentration ($10{\;}\mu\textrm{g}/ml$). 3. When P. nigrescens LPS was pretreated with $Ca(OH)_2$. MMP-1 and TIMP-1 gene expression was downregulated. The results of this study suggest that transcriptional regulation of MMP-1 and TIMP-1 by P. nigrescens LPS could be one of the important mechanisms in bone resorption of periapical inflammation. The result of calcium hydroxide on MMP-1 and TIMP-1 gene expression suppression shows that calcium hydroxide detoxified bacterial LPS and thus should be used the medication of choice for intracanal dressings in root canal infected with black-pigmented bacteria.

Geology and Soils of Chojeong-Miwon Area (초정-미원지역의 지질과 토양에 관한 연구)

  • 나기창
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2000
  • Chojeong area is mainly composed of the Ogcheon Group which consists of regionally metamorphosed, age-unknown sedimentary rocks. In the northwestern parts, the Group is intruded by the Jurassic Daebo granite and Cretaceous felsic and mafic dykes. The lowermost, Midongsan Formation which consists of milky white impure quartzite, crops out along the anticline axes with N40E trend. Ungyori quartzite Formation is intercalated with quartzite and slate. Miwon Formation is most widely exposed in the area and consists mainly of phyllitic sandy rocks with a thin crystalline limestone bed. Hwajeonri Formation is divided into two parts, pelitic lower and calcareous upper parts, composed with phyllite and slate. Changri and Hwanggangri Formations are typical members of Ogcheon Group, the former bearing coally graphite seams consists mainly of black slate and phyllite with intercalated greenish grey phyllite, the latter is pebble bearing phyllite formation of which matrix and pebbles are variable in compositions and size. Biotite granite, porphyritic granite and two mica granite belong to Jurassic so-called Dabo granite. They intruded the Ogcheon Group forming vast contact metarnophic zone. Quartz porphyry, mafic dyke and felsite intruded along the marginal zone of porphyritic granite batholith and fracture of NS trend. Main structural lineaments in Ogcheon Group shows N25-45E, NS and N30-45W trends. The N25-45E trends are mainly from general ductile deformation during regional metamorphism, showing isoclinal folding, Fl foliations and lithological erosional characters. Some of these trends are due to normal faults. The NS and N30-45W trends represent brittle deformation including faults and joints. In the area of granitic batholith, NS to N30- 45 trends are from the direction of dykes. In the soils of the area, average contents of heavy metal elements such as Cd, Cr, Cu, Pb, and Zn are 0.2, 50.6, 35.5, 27.9, and 93.4 ppm respectively, which are not higher than the average values of natural soils, under the tolerable level. Enrichment Index does not show any heavy metal pollution in the area. Average depths of weathering(5m vs. 2m), porosities(43.94 vs. 51.80), densities(l.29 vs. 1.15), and permeabilities(2.52 vs. 8.07) are comparable in granite areas and in the phyllite areas of Ogcheon Group.

  • PDF

Development and Validation of an Analytical Method for Quinoxyfen in Agricultural Products using QuEChERS and LC-MS/MS (QuEChERS법 및 LC-MS/MS를 이용한 농산물 중 살균제 Quinoxyfen의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.140-147
    • /
    • 2019
  • An analytical method was developed for the determination of quinoxyfen in agricultural products using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted with 1% acetic acid in acetonitrile and water was removed by liquid-liquid partitioning with $MgSO_4$ (anhydrous magnesium sulfate) and sodium acetate. Dispersive solid-phase extraction (d-SPE) cleanup was carried out using $MgSO_4$, PSA (primary secondary amine), $C_{18}$ (octadecyl) and GCB (graphitized carbon black). The analytes were quantified and confirmed by using LC-MS/MS in positive mode with MRM (multiple reaction monitoring). The matrix-matched calibration curves were constructed using six levels ($0.001-0.25{\mu}g/mL$) and the coefficient of determination ($R^2$) was above 0.99. Recovery results at three concentrations (LOQ, 10 LOQ, and 50 LOQ, n=5) were in the range of 73.5-86.7% with RSDs (relative standard deviations) of less than 8.9%. For inter-laboratory validation, the average recovery was 77.2-95.4% and the CV (coefficient of variation) was below 14.5%. All results were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for quinoxyfen determination in agricultural commodities. This study could be useful for the safe management of quinoxyfen residues in agricultural products.

Development and Validation of an Analytical Method for Fenpropimorph in Agricultural Products Using QuEChERS and LC-MS/MS (QuEChERS법과 LC-MS/MS를 이용한 농산물 중 Fenpropimorph 시험법 개발 및 검증)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.115-123
    • /
    • 2019
  • An analytical method was developed for the determination of fenpropimorph, a morpholine fungicide, in hulled rice, potato, soybean, mandarin and green pepper using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) sample preparation and LC-MS/MS (liquid chromatography-tandem mass spectrometry). The QuEChERS extraction was performed with acetonitrile followed by addition of anhydrous magnesium sulfate and sodium chloride. After centrifugation, d-SPE (dispersive solid phase extraction) cleanup was conducted using anhydrous magnesium sulfate, primary secondary amine sorbents and graphitized carbon black. The matrix-matched calibration curves were constructed using seven concentration levels, from 0.0025 to 0.25 mg/kg, and their correlation coefficient ($R^2$) of five agricultural products were higher than 0.9899. The limits of detection (LOD) and quantification (LOQ) were 0.001 and 0.0025 mg/kg, respectively, and the limits of quantification for the analytical method were 0.01 mg/kg. Average recoveries spiked at three levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n=5) and were in the range of 90.9~110.5% with associated relative standard deviation values less than 5.7%. As a result of the inter-laboratory validation, the average recoveries between the two laboratories were 88.6~101.4% and the coefficient of variation was also below 15%. All optimized results were satisfied the criteria ranges requested in the Codex guidelines and Food Safety Evaluation Department guidelines. This study could serve as a reference for safety management relative to fenpropimorph residues in imported and domestic agricultural products.

Determination and Validation of an Analytical Method for Spiropidion and Its Metabolite Spiropidion-enol (SYN547305) in Agricultural Products with LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Spiropidion 및 대사산물 Spiropidion-enol (SYN547305) 시험법 개발 및 검증)

  • Gu, Sun Young;Lee, Su Jung;Shin, Hye-Sun;Kang, Sung Eun;Chung, Yun Mi;Lee, Jung Mi;Jung, Yong-hyun;Moon, Guiim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.82-94
    • /
    • 2022
  • BACKGROUND: Spiropidion and its metabolite are tetramic acid insecticide and require the establishment of an official analysis method for the safety management because they are newly registered in Korea. Therefore, this study was to determine the analysis method of residual spiropidion and its metabolite for the five representative agricultural products. METHODS AND RESULTS: Three QuEChERS methods (original, AOAC, and EN method) were applied to optimize the extraction method, and the EN method was finally selected by comparing the recovery test and matrix effect results. Various adsorbent agents were applied to establish the clean up method. As a result, the recovery of spiropidion was reduced when using the dispersive-SPE method with MgSO4, primary secondary amine (PSA), graphitized carbon black (GCB) and octadecyl (C18) in soybean. Color interference was minimized by selecting the case including GCB and C18 in addition to MgSO4. This method was established as the final analysis method. LC-MS/MS was used for the analysis by considering the selectivity and sensitivity of the target pesticide and the analysis was performed in MRM mode. The results of the recovery test using the established analysis method and inter laboratory validation showed a valid range of 79.4-108.4%, with relative standard deviation and coefficient of variation were less than 7.2% and 14.4%, respectively. CONCLUSION(S): Spiropidion and its metabolite could be analyzed with a modified QuEChERS method, and the established method would be widely available to ensure the safety of residual insecticides in Korea.

Development and Validation of the Analytical Method for Oxytetracycline in Agricultural Products using QuEChERS and LC-MS/MS (QuEChERS법 및 LC-MS/MS를 이용한 농산물 중 Oxytetracycline의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Cho, Myong-Shik;Jung, ong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.227-234
    • /
    • 2019
  • An analytical method was developed for the determination of oxytetracycline in agricultural products using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method by liquid chromatography-tandem mass spectrometry (LC-MS/MS). After the samples were extracted with methanol, the extracts were adjusted to pH 4 by formic acid and sodium chloride was added to remove water. Dispersive solid phase extraction (d-SPE) cleanup was carried out using $MgSO_4$ (anhydrous magnesium sulfate), PSA (primary secondary amine), $C_{18}$ (octadecyl) and GCB (graphitized carbon black). The analytes were quantified and confirmed with LC-MS/MS using ESI (electrospray ionization) in positive ion MRM (multiple reaction monitoring) mode. The matrix-matched calibration curves were constructed using six levels ($0.001{\sim}0.25{\mu}g/mL$) and coefficient of determination ($r^2$) was above 0.99. Recovery results at three concentrations (LOQ, $10{\times}LOQ$, and $50{\times}LOQ$, n=5) were from 80.0 to 108.2% with relative standard deviations (RSDs) less than of 11.4%. For inter-laboratory validation, the average recovery was in the range of 83.5~103.2% and the coefficient of variation (CV) was below 14.1%. All results satisfied the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for oxytetracycline determination in agricultural commodities. This study could be useful for safety management of oxytetracycline residues in agricultural products.