• 제목/요약/키워드: black hole physics

검색결과 92건 처리시간 0.023초

CAN A WIND MODEL MIMIC A CONVECTION-DOMINATED ACCRETION FLOW MODEL\ulcorner

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper we investigate the properties of advection-dominated accretion flows (ADAFs) in case that outflows carry away infalling matter with its angular momentum and energy. Positive Bernoulli number in ADAFs allow a fraction of the gas to be expelled in a form of outflows. The ADAFs are also unstable to convection. We present self-similar solutions for advection-dominated accretion flows in the presence of outflows from the accretion flows(ADIOS). The axisymmetric flow is treated in variables integrated over polar sections and the effects of outflows on the accretion flow are parameterized for possible configurations compatible with the one dimensional self-similar ADAF solution. We explicitly derive self-similar solutions of ADAFs in the presence of outflows and show that the strong outflows in the accretion flows result in a flatter density profile, which is similar to that of the convection-dominated accretion flows(CDAFs) in which convection transports the angular momentum inward and the energy outward. There two different versions of the ADAF model should show similar behaviors in X-ray spectrum to some extent. Even though the two models may show similar behaviors, they should be distinguishable due to different physical properties. We suggest that for a central object of which mass is known these two different accretion flow should have different X-ray flux value due to deficient matter in the wind model.

  • PDF

A Census of Ionized Gas Outflows in Local Type-2 AGNs

  • Bae, Hyun-Jin;Woo, Jong-Hak
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.58.1-58.1
    • /
    • 2014
  • Energetic gas outflows from active galactic nuclei (AGNs) may have a crucial role in galaxy evolution. In this contribution, we present a census of ionized gas outflows using a large sample (~23,000) of local (z < 0.1) type-2 AGNs selected from the Sloan Digital Sky Survey DR 7. By measuring the velocity offset of narrow emission lines, i.e., [O III] ${\lambda}5007$ and the Balmer lines, with respect to the systemic velocity measured from the stellar absorption lines, we find ~47% of AGNs showing an [O III] line-of-sight velocity offset ${\geq}20km\;s-1$. The fraction in type-2 AGNs is similar to that in type-1 AGNs after considering the projection effect. AGNs with larger [O III] velocity offsets, in particular with no or weak $H{\alpha}$ velocity offsets, tend to have higher Eddington ratios, implying that the [O III] velocity offset is related to on-going black hole activity. Also, we find the different distributions of the host galaxy inclination between the AGNs with blueshifted [O III] and the AGNs with redshifted [O III], supporting the model of biconical outflow with dust obscuration. Meanwhile, for ~3% of AGNs, [O III] and $H{\alpha}$ exhibit comparable large velocity offsets, suggesting a more complex gas kinematics than decelerating outflows in the narrow-line region.

  • PDF

An observed link between AGN Eddington ratio and [NII] λ6583/Hα at 0.6

  • Oh, Kyuseok;Ueda, Yoshihiro;Akiyama, Masayuki;Suh, Hyewon;Koss, Michael;Mushotzky, Richard;Hasinger, Guenther;Kashino, Daichi;Silverman, John
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.36.1-36.1
    • /
    • 2019
  • We present the observed relationship between Eddington ratio (${\lambda}Edd$) and optical narrow-emission-line ratio ([NII] ${\lambda}6583/H{\alpha}$) of X-ray-selected unobscured active galactic nuclei (AGN) at 0.6 < z < 1.7 using 27 near-infrared spectra from the Fiber Multi-Object Spectrograph mounted on the Subaru telescope along with 26 additional sources from the literature. We show that the ${\lambda}Edd$ and [NII] ${\lambda}6583/H{\alpha}$ ratio at 0.6 < z < 1.7 exhibits a similar distribution of ${\lambda}Edd$-[NII] ${\lambda}6583/H{\alpha}$ anti-correlation that has been found for local ( = 0.036), hard X-ray selected AGN. The observed anti-correlation suggests that [N II] ${\lambda}6583/H{\alpha}$ optical narrow-line ratio in the AGN host galaxy may carry important information about the accretion state of the central supermassive black hole, suggesting the observational hint of consistent relationship from local to z ~ 1.7. Further study is necessary to determine whether the ${\lambda}Edd$-[N II] ${\lambda}6583/H{\alpha}$ correlation in high-redshift still holds at ${\log}{\lambda}Edd$ < -2 compared to local AGN.

  • PDF

Mass-loss of massive helium star supernova progenitors shortly before explosion constrained by supernova radio properties

  • Takashi J Moriya;Sung-Chul Yoon
    • Monthly Notices of the Royal Astronomical Society
    • /
    • 제513권4호
    • /
    • pp.5606-5610
    • /
    • 2022
  • Mass-loss of massive helium stars is not well understood even though it plays an essential role in determining their remnant neutron-star or black hole masses as well as ejecta mass of Type Ibc supernovae (SNe Ibc). Radio emission from SNe Ibc is strongly affected by circumstellar matter properties formed by mass-loss of their massive helium star progenitors. In this study, we estimate the rise time and peak luminosity distributions of SNe Ibc in radio based on a few massive helium star mass-loss prescriptions and compare them with the observed distribution to constrain the uncertain massive helium star mass-loss rates. We find that massive helium stars in the luminosity range expected for ordinary SNe Ibc progenitors (4.6≲log L/L≲5.2) should generally have large mass-loss rates (≳10-6Myr-1) in order to account for the observed rise time and peak luminosity distribution. Therefore, mass-loss prescriptions that predict significantly low mass-loss rates for helium stars in this luminosity range is inconsistent with the SN radio observations. It is also possible that massive helium stars shortly before their explosion generally undergo mass-loss enhancement in a different way from the standard radiation-driven wind mechanism.

No asymmetric outflows from Sagittarius A* during the pericenter passage of the gas cloud G2

  • Park, Jong-Ho;Trippe, Sascha;Krichbaum, Thomas;Kim, Jae-Young;Kino, Motoki;Bertarini, Alessandra;Bremer, Michael;de Vicente, Pablo
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.73.2-74
    • /
    • 2015
  • The gas cloud G2 falling toward Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, is supposed to provide valuable information on the physics of accretion flows and the environment of the black hole. We observed Sgr A* with four European stations of the Global Millimeter Very Long Baseline Interferometry Array (GMVA) at 86 GHz on 1 October 2013 when parts of G2 had already passed the pericenter. We searched for possible transient asymmetric structure - such as jets or winds from hot accretion flows - around Sgr A* caused by accretion of material from G2. The interferometric closure phases (which are zero if the spatial brightness distribution of the target is symmetric, and deviate from zero otherwise) remained zero within errors during the observation time. We thus conclude that Sgr A* did not show significant asymmetric (in the observer frame) outflows in late 2013. Using simulations, we constrain the size of the outflows that we could have missed to ${\approx}2.5$ mas along the major axis, ${\approx}0.4$ mas along the minor axis of the beam, corresponding to approximately 232 and 35 Schwarzschild radii, respectively; we thus probe spatial scales on which the jets of radio galaxies are suspected to convert magnetic into kinetic energy. As probably less than 0.2 Jy of the flux from Sgr A* can be attributed to accretion from G2, one finds an effective accretion rate ${\eta}M{\leq}1.5{\times}10^9kg/s{\approx}7.7{\times}10^{-9}M_{earth}/yr$ for material from G2. Exploiting the kinetic jet power-accretion power relation of radio galaxies, one finds that the rate of accretion of matter that ends up in jets is limited to $M{\leq}10^{17}kg/s{\approx}0.5M_{Earth}/yr$ less than about 20% of the mass of G2. Accordingly, G2 appears to be largely stable against loss of angular momentum and subsequent (partial) accretion at least on time scales ${\leq}1$ year.

  • PDF

IMPLICATION OF STELLAR PROPER MOTION OBSERVATIONS ON RADIO EMISSION OF SAGITTARIUS A

  • CHANG HEON-YOUNG;CHOI CHUL-SUNG
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.81-87
    • /
    • 2003
  • It is suggested that a flying-by star in a hot accretion disk may cool the hot accretion disk by the Comptonization of the stellar emission. Such a stellar cooling can be observed in the radio frequency regime since synchrotron luminosity depends strongly on the electron temperature of the accretion flow. If a bright star orbiting around the supermassive black hole cools the hot disk, one should expect a quasi-periodic modulation in radio, or even possible an anti-correlation of luminosities in radio and X-rays. Recently, the unprecedentedly accurate infrared imaging of the Sagittarius A$\ast$ for about ten years enables us to resolve stars around it and thus determine orbital parameters of the currently closest star S2. We explore the possibility of using such kind of observation to distinguish two quite different physical models for the central engine of the Sagittarius A$\ast$, that is, a hot accretion disk model and a jet model. We have attempted to estimate the observables using the observed parameters of the star S2. The relative difference in the electron temperature is a few parts of a thousand at the epoch when the star S2 is near at the pericenter. The relative radio luminosity difference with and without the stellar cooling is also small of order $10^{-4}$, particularly even when the star S2 is near at the pericenter. On the basis of our findings we tentatively conclude that even the currently closest pass of the star S2 is insufficiently close enough to meaningfully constrain the nature of the Sagittarius A$\ast$ and distinguish two competing models. This implies that even though Bower et al. (2002)have found no periodic radio flux variations in their data set from 1981 to 1998, which is naturally expected from the presence of a hot disk, a hot disk model cannot be conclusively ruled out. This is simply because the energy bands they have studied are too high to observe the effect of the star S2 even if it indeed interacts with the hot disk. In other words, even if there is a hot accretion disk the star like S2 has imprints in the frequency range at v $\le$ 100 MHz.

SgrA* 22GHz KaVA(+TAK) observation and its Amplitude Calibration

  • CHO, ILJE;JUNG, TAEHYUN;ZHAO, GUANG-YAO;KINO, MOTOKI;SOHN, BONGWON
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.52.2-52.2
    • /
    • 2015
  • SgrA* located in the center of the Milky Way is of great interest to understand the physics of supermassive black hole(SMBH) and the interaction of the G2 cloud around SgrA* with the accretion flow which was expected since 2013. In order to seize this rare opportunity, KVN and VERA Array (so called, KaVA) has started an intensive monitoring program of SgrA* at 22/43 GHz where scatter broadening is reduced compared to lower frequency VLBI observations. We present the results of KaVA SgrA* observation together with Takahagi (32m) and Yamaguchi (32m) telescopes at 22 GHz on March 24, 2013. We have tested both a standard amplitude calibration methods using the Tsys and antenna gain information and a template amplitude calibration method which uses a peak of H2O maser line of nearby maser source (SgrB2), and found that the latter method is useful when an accuracy of Tsys measurement or antenna gain of a telescope is poor. In our comparison, the difference between the two methods is around 20% (~5% for the KVN and ~15% for the VERA when the elevation is above $20^{\circ}$). We also imaged SgrA* with a total flux of ~0.7 Jy at 22GHz, and fitted an elliptical Gaussian model which has a size of ~2.5mas for major axis and ~1.7mas for minor axis, respectively.

  • PDF

SELF-SIMILAR SOLUTIONS OF ADVECTION-DOMINATED ACCRETION FLOWS REVISITED

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권2호
    • /
    • pp.139-146
    • /
    • 2005
  • A model of advection-dominated accretion flows has been highlighted in the last decade. Most of calculations are based on self-similar solutions of equations governing the accreting flows. We revisit self-similar solutions of the simplest form of advection-dominated accretion flows. We explore the parameter space thoroughly and seek another category of self-similar solutions. In this study we allow the parameter f less than zero, which denotes the fraction of energy transported through advection. We have found followings: 1. For f > 0, in real ADAF solutions the ratio of specific heats ${\gamma}$ satisfies 1 < ${\gamma}$ < 5/3 for O ${\leq}$ f ${\leq}$ 1. On the other hands, in wind solutions a rotating disk does not exist. 2. For f < 0, in real ADAF solutions with ${\epsilon}$ greater than zero ${\gamma}$ requires rather exotic range, that is, ${\gamma}$ < 1 or ${\gamma}$ > 5/3. When -5/2 < ${\epsilon}$' < 0, however, allowable ${\gamma}$ can be found in ${\gamma}$ < 5/3, in which case 4{\Omega}_0$,_ is imaginary. 3. For a negative $u_0$,+ with f > 0, solutions are only allowed with exotic ${\gamma}$, that is, 1 < ${\gamma}$ or ${\gamma}$ > (5f/2-5/3)/(5f/2-1)when O < f < 2/5, (5f/2-5/3)/(5f/2-1) < ${\gamma}$ < 1 when f > 2/5. Since ${\epsilon}$' is negative, 4{\Omega}_0$,+ is again an imaginary quantity. For a negative $u_0$,+ with f < 0, ${\gamma}$ is allowed in 1 < 7 < (5|f|/2 + 5/3)/(5|f|/2 + 1). We briefly discuss physical implications of what we have found.

Modeling Gamma-Ray Emission From the High-Mass X-Ray Binary LS 5039

  • Owocki, Stan;Okazaki, Atsuo;Romero, Gustavo
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권1호
    • /
    • pp.51-55
    • /
    • 2012
  • A few high-mass X-ray binaries-consisting of an OB star plus compact companion-have been observed by Fermi and ground-based Cerenkov telescopes like High Energy Stereoscopic System (HESS) to be sources of very high energy (VHE; up to 30 TeV) ${\gamma}$-rays. This paper focuses on the prominent ${\gamma}$-ray source, LS 5039, which consists of a massive O6.5V star in a 3.9-day-period, mildly elliptical ($e{\approx}0.24$) orbit with its companion, assumed here to be an unmagnetized compact object (e.g., black hole). Using three dimensional smoothed particle hydrodynamics simulations of the Bondi-Hoyle accretion of the O-star wind onto the companion, we find that the orbital phase variation of the accretion follows very closely the simple Bondi-Hoyle-Lyttleton (BHL) rate for the local radius and wind speed. Moreover, a simple model, wherein intrinsic emission of ${\gamma}$-rays is assumed to track this accretion rate, reproduces quite well Fermi observations of the phase variation of ${\gamma}$-rays in the energy range 0.1-10 GeV. However for the VHE (0.1-30 TeV) radiation observed by the HESS Cerenkov telescope, it is important to account also for photon-photon interactions between the ${\gamma}$-rays and the stellar optical/UV radiation, which effectively attenuates much of the strong emission near periastron. When this is included, we find that this simple BHL accretion model also quite naturally fits the HESS light curve, thus making it a strong alternative to the pulsar-wind-shock models commonly invoked to explain such VHE ${\gamma}$-ray emission in massive-star binaries.

POLARIZATION OF THOMSON SCATTERED LINE RADIATION FROM BROAD ABSORPTION LINE OUTFLOWS IN QUASARS

  • Baek, Kyoung-Min;Bang, Jeong-Hoon;Jeon, Yeon-Kyeong;Kang, Suna;Lee, Hee-Won
    • 천문학회지
    • /
    • 제40권1호
    • /
    • pp.1-7
    • /
    • 2007
  • About 10 percent of quasars are known to exhibit deep broad absorption troughs blueward of prominent permitted emission lines, which are usually attributed to the existence of outflows slightly above he accretion disk around the supermassive black hole. Typical widths up to 0.2c of these absorption roughs indicate the velocity scales in which special relativistic effects may not be negligible. Under he assumption of the ubiquity of the broad absorption line region in quasars, the broad emission line flux will exhibit Thomson scattered components from these fast outflows. In this paper, we provide our Monte Carlo calculation of linear polarization of singly Thomson scattered line radiation with the careful considerations of special relativistic effects. The scattering region is approximated by a collection of rings that are moving outward with speeds ${\upsilon}=c{\beta}<0.2c$ near the equatorial plane, and the scattered line photons are collected according to its direction and wavelength in the observer's rest frame. We find that the significantly extended red tail appears in the scattered radiation. We also find that the linear degree of polarization of singly Thomson scattered line radiation is wavelength-dependent and hat there are significant differences in the linear degree of polarization from that computed from classical physics in the far red tail. We propose that the semi-forbidden broad emission line C III]1909 may be significantly contributed from Thomson scattering because this line has small resonance scattering optical depth in the broad absorption line region, which leads to distinct and significant polarized flux in this broad emission line.