DOI QR코드

DOI QR Code

IMPLICATION OF STELLAR PROPER MOTION OBSERVATIONS ON RADIO EMISSION OF SAGITTARIUS A

  • 발행 : 2003.09.01

초록

It is suggested that a flying-by star in a hot accretion disk may cool the hot accretion disk by the Comptonization of the stellar emission. Such a stellar cooling can be observed in the radio frequency regime since synchrotron luminosity depends strongly on the electron temperature of the accretion flow. If a bright star orbiting around the supermassive black hole cools the hot disk, one should expect a quasi-periodic modulation in radio, or even possible an anti-correlation of luminosities in radio and X-rays. Recently, the unprecedentedly accurate infrared imaging of the Sagittarius A$\ast$ for about ten years enables us to resolve stars around it and thus determine orbital parameters of the currently closest star S2. We explore the possibility of using such kind of observation to distinguish two quite different physical models for the central engine of the Sagittarius A$\ast$, that is, a hot accretion disk model and a jet model. We have attempted to estimate the observables using the observed parameters of the star S2. The relative difference in the electron temperature is a few parts of a thousand at the epoch when the star S2 is near at the pericenter. The relative radio luminosity difference with and without the stellar cooling is also small of order $10^{-4}$, particularly even when the star S2 is near at the pericenter. On the basis of our findings we tentatively conclude that even the currently closest pass of the star S2 is insufficiently close enough to meaningfully constrain the nature of the Sagittarius A$\ast$ and distinguish two competing models. This implies that even though Bower et al. (2002)have found no periodic radio flux variations in their data set from 1981 to 1998, which is naturally expected from the presence of a hot disk, a hot disk model cannot be conclusively ruled out. This is simply because the energy bands they have studied are too high to observe the effect of the star S2 even if it indeed interacts with the hot disk. In other words, even if there is a hot accretion disk the star like S2 has imprints in the frequency range at v $\le$ 100 MHz.

키워드

참고문헌

  1. ApJ v.538 Sagittarius $A^*$ polarization: no advectiondominated accretion flow, low accretion rate, and nonthermal synchrotron emission Agol,E. https://doi.org/10.1086/312818
  2. Nature v.413 Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic center Baganoff,F.K.;Bautz,M.W.;Brandt,W.N.;Chartas,G.;Feigelson,E.D.;Garmire,G.P.;Macda,Y.;Morris,M.;Ricker,G.R.;Towmsley,L.K.;Walter,F. https://doi.org/10.1038/35092510
  3. A&A v.388 Circular polarization of radio emission from relativistic jets Beckert,T.;Falcke,H. https://doi.org/10.1051/0004-6361:20020484
  4. MNRAS v.303 On the fate of gas accreting at a low rate on to a black hole Blandford,R.D.;Begelman,M.C. https://doi.org/10.1046/j.1365-8711.1999.02358.x
  5. ApJ v.571 The spectrum and variability of circular polarization in Sagittarius A* from 1.4 to 15GHz Bower,G.C.;Falcke,H.;Sault,R.J.;Backer,D.C. https://doi.org/10.1086/340064
  6. ApJ v.588 Interferometric detection of linear polarization from Sagittarius A* at 230 GHz Bower,G.C.;Wright,M.C.H.;Falcke,H.;Backer,D.C. https://doi.org/10.1086/373989
  7. JASS v.18 Can a wind model mimic a convection-dominated accretion flow model? Chang,H.Y.
  8. ApJ v.551 Cooling a hot disk around a supermassive black nole by a star Chang,H.Y. https://doi.org/10.1086/320023
  9. JKAS v.35 Iron line profiles from relativistic elliptical accretion disks Chang,H.Y.;Choi,C.S. https://doi.org/10.5303/JKAS.2002.35.3.123
  10. A&A, Astro-ph/0306496 Radio variability of the Sagittarius A* due to an orbiting star Chang,H.Y.;Choi,C.S. https://doi.org/10.1051/0004-6361:20031264
  11. JKAS v.34 X-Ray archival data analysis of time variabilities in seyfert galaxy MCG-2-58-22 Choi,C.S.;Dotani,T.;Yi,I.;Fletcher,A.;Kim,C.
  12. JKAS v.35 Longterm X-ray variabilities of the Seyfert galaxy MCG-2-58-22: secular flux decrease and flares Choi,C.S.;Dotani,T.;Chang,H.Y;Yi,I.
  13. Bright stars and an inactive disk in Sgr A* and other dormant galaxy centers Ⅰ.The optically thick disk, astro-ph/0304533 Cuadra,J.;Nayakshin,S.;Sunyaev,R. https://doi.org/10.1051/0004-6361:20031350
  14. ApJ v.369 Luminosity enhancement factor for thermal Comptonization and the electron energy balance Dermer,C.D.;Liang,E.P.;Canfield,E. https://doi.org/10.1086/169770
  15. A&A v.286 The spectrum of SGR A* and its variability Duschl,W.J.;Lesch,H.
  16. Nature v.415 Astronomy: X-rays reveal the Galaxy's centre Eckart,A. https://doi.org/10.1038/415148a
  17. MNRAS v.284 Stellar proper motions in the central 0.1 PC of the Galaxy Eckart,A.;Genzel,R. https://doi.org/10.1093/mnras/284.3.576
  18. A&A v.362 The jet model for Sar A*: radio and X-ray spectrum Falcke,H.;Markoff,S.
  19. ApJ v.576 Adaptive optics near-infrared spectroscopy of the Sagittarius A* cluster Gezari,S.;Ghez,A.M.;Becklin,E.E.;Larkin,J.;McLean,I.S.;Morris,M. https://doi.org/10.1086/341807
  20. ApJ v.509 High proper-motion stars in the vicinity of Sagittarius A*: evidence for a supermassive black hole at the center of our Galaxy Ghez,A.M.;Klein,B.L.;Morris,M.;Becklin,E.E. https://doi.org/10.1086/306528
  21. ApJ v.586 The first measurement of spectral lines in a short-period star bound to the Galazy's central black hole: a paradox of youth Ghez,A.M.;Duchene,G.;Matthews,K.;Hornstein,S.D.;Tanner,A.;Larkin,J.;Morris,M.;Becklin,E.E.;Salim,S.;Kremenek,T.;Thompson,D.;Soifer,B.T.;Neugebauer,G.;McLean,I. https://doi.org/10.1086/374804
  22. ApJ v.584 A new X-ray flare from the galactic nucleus detected with the XMM-Newton photon imaging cameras Goldwurm,A.;Brion,E.;Goldni,P.;Ferrando,P.;Daigne,F.;Decourchelle,A.;Warwick,R.S.;Predehl,P. https://doi.org/10.1086/345749
  23. MNRAS v.278 Energetics of star-disc encounters in the non-linear regime Hall,S.M.;Clarke,C.J.;Pringle,J.E.
  24. ApJ v.516 The spectral energy distributions of lowluminosity active galactic muclei Ho,L.C. https://doi.org/10.1086/307137
  25. ApJ v.577 Limits on the short-term variability of Sagittarius $A^*$ in the near-infrared Hornstein,S.D.;Ghez,A.M.;Tanner,A.;Morris,M.;Becklin,E.E.;Wizinowich,P. https://doi.org/10.1086/344098
  26. ApJ v.214 Bimodal behavior of accretion diskstheory and application to Cygnus X-1 transitions Ichimaru,S. https://doi.org/10.1086/155314
  27. ApJ v.549 A new model of a tidally disrupted star Ivanov,P.B.;Novikov,I.D. https://doi.org/10.1086/319050
  28. Black hole accretion disks Kato,S.;Fukue,J.;Mineshige,s.
  29. ApJ v.566 An accretion-induced X-ray flare in Sagittarius $A^*$ Liu,S.;Melia,F. https://doi.org/10.1086/339693
  30. ApJ v.477 Scaling laws for advection-dominated flows: applications to low-luminosity galactic nuclei Mahadevan,R. https://doi.org/10.1086/303727
  31. ApJ v.489 Spectrum of optically thin advection-dominated accretion flow around a black hole: application to Sagittarius $A^*$ Manmoto,T.;Mineshige,S.;Kusunose,M. https://doi.org/10.1086/304817
  32. A&A v.379 The nature of the 10 kilosecond X-ray flare in Sar A* Markoff,S.;Falcke,H.;Yuan,F.;Biermann,P.L. https://doi.org/10.1051/0004-6361:20011346
  33. ARA&A v.31 X-ray spectra and time variability of active galactic nuclei Mushotzky,R.F.;Done,C.;Pounds,K.A. https://doi.org/10.1146/annurev.aa.31.090193.003441
  34. ApJ v.539 Self-similar accretion flows with convection Narayan,R.;Igumenshchev,I.V.;Abramowicz,M.A. https://doi.org/10.1086/309268
  35. Theory of Black Hole Accretion Disks Advection-dominated accretion around black holes Narayan,R.;Mahadevan,R.;Quataert,E.;M.A.Abramowicz(ed.);G.Bjornsson(ed.);J.E.Pringle(ed.)
  36. ApJ v.492 Advection-dominated accretion model of Sagittarius $A^*$: evidence for a black hole at the Galactic center Narayan,R.;Mahadevan,R.;Grindlay,J.E.;Popham,R.G.;Gammie,C.
  37. ApJ v.428 Advection-dominated accretion: a self-similar solution Narayan,R.;Yi,I. https://doi.org/10.1086/187381
  38. ApJ v.452 Advection-dominated accretion: underfed black holes and neutron stars Narayan,R.;Yi,I. https://doi.org/10.1086/176343
  39. Nature v.374 Explaining the spectrum of Sagittarius $A^*$ with a model of an accreting black-hole Narayan,R.;Yi,I.;Mahadevan,R. https://doi.org/10.1038/374623a0
  40. ApJ v.517 What is the accretion rate in Sagittarius $A^*$? Quataert,E.;Narayan,R.;Reid,M.J. https://doi.org/10.1086/312035
  41. ApJ v.539 Convection-dominated accretion flows Quataert,E.;Gruzinov,A. https://doi.org/10.1086/309267
  42. ApJ v.545 Constraining the accretion rate onto Sagittarius $A^*$ using linear polarization Quataert,E.;Gruzinov,A. https://doi.org/10.1086/317845
  43. ARA&A v.22 Black hole models for active galactic nuclei Rees,M.J. https://doi.org/10.1146/annurev.aa.22.090184.002351
  44. Nature v.333 Tidal disruption of stars by black holes of 10 to the 6th-10 to the 8th solar masses in nearby galaxies Rees,M.J. https://doi.org/10.1038/333523a0
  45. Nature v.295 Ion-supported tori and the origin of radio jets Rees,M.J.;Phinney,E.S.;Begelman,M.C.;Blandford,R.D. https://doi.org/10.1038/295017a0
  46. Nature v.419 A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way Schodel,R.;Ott,T.;Genzel,R.;Hofmann,R.;Lehnert,M.;Eckart,A.;Mouawad,N.;Alexander,T.;Reid,M.J.;Lenzen,R.;Hartung,M.;Lacombe,F.;Rouan,D.;Gendron,E.;Rousset,G.;Lagrange,A.M.;Brandner,W.;Ageorges,N.;Lidman,C.;Moorwood,A.F.M.;Spyromilio,J.;Hubin,N.;Menten,K.M. https://doi.org/10.1038/nature01121
  47. A&A v.24 Black holes in binary systems. observational appearance Shakura,N.I.;Sunyaev,R.A.
  48. MNRAS v.204 Numerical FITS to important rates in high temperature astrophysical plasmas Stepney ,S.;Guilbert,P.W. https://doi.org/10.1093/mnras/204.4.1269
  49. MNRAS v.250 Star-disc interactions near a massive black hole Syer,D.;Clarke,C.J.;Rees,M.J. https://doi.org/10.1093/mnras/250.3.505
  50. ApJ v.531 Advection-dominated inflow/outflows from evaporating accretion disks Turolla,R.;Dullemond,C.P. https://doi.org/10.1086/312527
  51. ApJ v.547 Radio variability of Sagittarius $A^*$ -a 106 day cycle Zhao,J.H.;Bower,G.C.;Goss,W.M. https://doi.org/10.1086/318877
  52. ApJ v.586 Variability of Sagittarius $A^*$: flares at 1 millimeter Zhao,J.H.;Young,K.H.;Herrnstein,R.M.;Ho,P.T.P.;Tsutsumi,T.;Lo,K.Y.;Goss,W.M.;Bower,G.C. https://doi.org/10.1086/374581