• Title/Summary/Keyword: bivariate return period

Search Result 29, Processing Time 0.027 seconds

Spatio-temporal pattern of ecological droughts by using the Standardized Water Supply Demand Index in the Hwang River.

  • Sadiqi, Sayed Shajahan;Hong, Eun-Mi;Nam, Won-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.158-158
    • /
    • 2022
  • Ecological drought consequences have received a lot of attention in recent years. Thus, ecological drought was proposed as a new drought category to characterize the impact of drought on ecosystems. The current study used a unique drought index, the standardized supply-demand water index (SSDI), and a run theory to detect ecological drought occurrences and characteristics such as drought-affected area, drought severity, drought duration, drought frequency, and drought orientation in the Hwang River, an environmentally valuable region. Hence, to assess drought-prone areas, the bivariate probability and return period will be calculated using a two-dimensional joint copula. The core results show that (a) the Spatio-temporal characteristics of ecological drought were successfully recognized using the spatial and temporal identification approach; (b) in comparison to the SPEI meteorological drought index, the SSDI is more credible and can more readily and effectively capture the entire properties of ecological drought information; (c) the Hwang river had seen the most severe drought occurrences between the late 1990s and the mid-2020s, with 48.3 percent occurring before the twenty-first century; (d) Severe ecological drought occurrences occurred more frequently in most areas of the Hwang River (e) Only the drought duration and severity in the Hwang area were more responsive to temperature when temperatures rise around 1.1℃, the average drought duration and severity rise around 16 % and 26 %, respectively. This suggested that the Hwang River has been exposed to more severe heat stress in the twenty-first century. Thereupon droughts in the twenty-first century occurred with bigger affected regions, longer durations, higher frequency, and more intensity.

  • PDF

Estimating design floods based on bivariate rainfall frequency analysis and rainfall-runoff model (이변량 강우 빈도분석과 강우-유출 모형에 기반한 설계 홍수량 산정 방안)

  • Kim, Min Ji;Park, Kyung Woon;Kim, Seok-Woo;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.737-748
    • /
    • 2022
  • Due to the lack of flood data, the water engineering practice calculates the design flood using rainfall frequency analysis and rainfall-runoff model. However, the rainfall frequency analysis for arbitrary duration does not reflect the regional characteristics of the duration and amount of storm event. This study proposed a practical method to calculate the design flood in a watershed considering the characteristics of storm event, based on the bivariate rainfall frequency analysis. After extracting independent storm events for the Pyeongchang River basin and the upper Namhangang River basin, we performed the bivariate rainfall frequency analysis to determine the design storm events of various return periods, and calculated the design floods using the HEC-1 model. We compared the design floods based on the bivariate rainfall frequency analysis (DF_BRFA) with those estimated by the flood frequency analysis (DF_FFA), and those estimated by the HEC-1 with the univariate rainfall frequency analysis (DF_URFA). In the case of the Pyeongchang River basin, except for the 100-year flood, the average error of the DF_BRFA was 11.6%, which was the closest to the DF_FFA. In the case of the Namhangang River basin, the average error of the DF_BRFA was about 10%, which was the most similar to the DF_FFA. As the return period increased, the DF_URFA was calculated to be much larger than the DF_FFA, whereas the BRFA produced smaller average error in the design flood than the URFA. When the proposed method is used to calculate design flood in an ungauged watershed, it is expected that the estimated design flood might be close to the actual DF_FFA. Thus, the design of the hydrological structures and water resource plans can be carried out economically and reasonably.

Future drought risk assessment under CMIP6 GCMs scenarios

  • Thi, Huong-Nguyen;Kim, Jin-Guk;Fabian, Pamela Sofia;Kang, Dong-Won;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.305-305
    • /
    • 2022
  • A better approach for assessing meteorological drought occurrences is increasingly important in mitigating and adapting to the impacts of climate change, as well as strategies for developing early warning systems. The present study defines meteorological droughts as a period with an abnormal precipitation deficit based on monthly precipitation data of 18 gauging stations for the Han River watershed in the past (1974-2015). This study utilizes a Bayesian parameter estimation approach to analyze the effects of climate change on future drought (2025-2065) in the Han River Basin using the Coupled Model Intercomparison Project Phase 6 (CMIP6) with four bias-corrected general circulation models (GCMs) under the Shared Socioeconomic Pathway (SSP)2-4.5 scenario. Given that drought is defined by several dependent variables, the evaluation of this phenomenon should be based on multivariate analysis. Two main characteristics of drought (severity and duration) were extracted from precipitation anomalies in the past and near-future periods using the copula function. Three parameters of the Archimedean family copulas, Frank, Clayton, and Gumbel copula, were selected to fit with drought severity and duration. The results reveal that the lower parts and middle of the Han River basin have faced severe drought conditions in the near future. Also, the bivariate analysis using copula showed that, according to both indicators, the study area would experience droughts with greater severity and duration in the future as compared with the historical period.

  • PDF

A development of bivariate regional drought frequency analysis model using copula function (Copula 함수를 이용한 이변량 가뭄 지역빈도해석 모형 개발)

  • Kim, Jin-Guk;Kim, Jin-Young;Ban, Woo-Sik;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.985-999
    • /
    • 2019
  • Over the last decade, droughts have become more severe and frequent in many regions, and several studies have been conducted to explore the recent drought. Copula-based bivariate drought frequency analysis has been widely used to evaluate drought risk in the context of point frequency analysis. However, the relatively significant uncertainties in the parameters are problematic when available data are limited. For this reason, the primary purpose of this study is to develop a regional drought frequency model based on the Copula function. All parameters, including marginal and copula functions in the regional frequency model, were estimated simultaneously. Here, we present a case study of recent drought 2013-2015 over the Han-River watershed where severe drought risk is consistently found to increase. The proposed model provided a reliable way to significantly reduce the uncertainty of parameters with a Bayesian modeling framework. The uncertainty of the joint return period in the regional frequency analysis is nearly three times lower than that of the point frequency analysis. Accordingly, DIC values in the regional frequency analysis model are significantly decreased by 15. The results confirm that the proposed model is not only reliably representing characteristics of historical droughts and dependencies between drought variables, but also providing the efficacy of understanding regional drought characteristics.

Evaluation of Future Hydrologic Risk of Drought in Nakdong River Basin Using Bayesian Classification-Based Composite Drought Index (베이지안 분류 기반 통합가뭄지수를 활용한 낙동강 유역의 미래 가뭄에 대한 수문학적 위험도 분석)

  • Kim, Hyeok;Kim, Ji Eun;Kim, Jiyoung;Yoo, Jiyoung;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.309-319
    • /
    • 2023
  • Recently, the frequency and intensity of meteorological disasters have increased due to climate change. In South Korea, there are regional differences in vulnerability and response capability to cope with climate change because of regional climate characteristics. In particular, drought results from various factors and is linked to extensive meteorological, hydrological, and agricultural impacts. Therefore, in order to effectively cope with drought, it is necessary to use a composite drought index that can take into account various factors, and to evaluate future droughts comprehensively considering climate change. This study evaluated hydrologic risk(${\bar{R}}$) of future drought in the Nakdong River basin based on the Dynamic Naive Bayesian Classification (DNBC)-based composite drought index, which was calculated by applying Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), Evaporate Stress Index (ESI) and Water Supply Capacity Index (WSCI) to the DNBC. The indices used in the DNBC were calculated using observation data and climate scenario data. A bivariate frequency analysis was performed for the severity and duration of the composite drought. Then using the estimated bivariate return periods, hydrologic risks of drought were calculated for observation and future periods. The overall results indicated that there were the highest risks during the future period (2021-2040) (${\bar{R}}$=0.572), and Miryang River (#2021) had the highest risk (${\bar{R}}$=0.940) on average. The hydrologic risk of the Nakdong River basin will increase highly in the near future (2021-2040). During the far future (2041-2099), the hydrologic risk decreased in the northern basins, and increased in the southern basins.

Drought Frequency Analysis Using Cluster Analysis and Bivariate Probability Distribution (군집분석과 이변량 확률분포를 이용한 가뭄빈도해석)

  • Yoo, Ji Young;Kim, Tae-Woong;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.599-606
    • /
    • 2010
  • Due to the short period of precipitation data in Korea, the uncertainty of drought analysis is inevitable from a point frequency analysis. So it is desired to introduce a regional drought frequency analysis. This study first extracted drought characteristics from 3-month and 12-month moving average rainfalls which represent short and long-term droughts, respectively. Then, the homogeneous regions were distinguished by performing a principal component analysis and cluster analysis. The Korean peninsula was classified into five regions based on drought characteristics. Finally, this study applied the bivariate frequency analysis using a kernel density function to quantify the regionalized drought characteristics. Based on the bivariate drought frequency curves, the drought severities of five regions were evaluated for durations of 2, 5, 10, and 20 months, and return periods of 5, 10, 20, 50, and 100 years. As a result, the largest severity of drought was occurred in the Lower Geum River basin, in the Youngsan River basin, and over in the southern coast of Korea.

Development of Temporal Downscaling under Climate Change using Vine Copula (Vine Copula를 활용한 기후변화 시나리오 시간적 상세화 기법 개발)

  • Yu, Jae-Ung;Kwon, Yoon Jeong;Park, Minwoo;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.161-172
    • /
    • 2024
  • A Copula approach has the advantage of providing structural dependencies for representing multivariate distributions for the hydrometeorological variable marginal distribution involved, however, copulas are inflexible for extending in high dimensions, and satisfy certain assumptions to make the dependency. In addition, since the process of estimating design rainfall under the future climate associated with durations given a return period is mainly analyzed by 24-hour annual maximum rainfalls, the dependency structure contains information only on the daily and sub-daily extreme precipitation. Methods based on bivariate copula do not provide information for other duration's dependencies, which causes the intensity to be reversed. The vine copula has been proposed to process the multivariate analysis as vines consisting of trees with nodes and edges connecting pair-copula construction. In this study, we aimed to downscale under climate change to produce sub-daily extreme precipitation data considering different durations based on vine copula.

A development of multivariate drought index using the simulated soil moisture from a GM-NHMM model (GM-NHMM 기반 토양함수 모의결과를 이용한 합성가뭄지수 개발)

  • Park, Jong-Hyeon;Lee, Joo-Heon;Kim, Tae-Woong;Kwon, Hyun Han
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.545-554
    • /
    • 2019
  • The most drought assessments are based on a drought index, which depends on univariate variables such as precipitation and soil moisture. However, there is a limitation in representing the drought conditions with single variables due to their complexity. It has been acknowledged that a multivariate drought index can more effectively describe the complex drought state. In this context, this study propose a Copula-based drought index that can jointly consider precipitation and soil moisture. Unlike precipitation data, long-term soil moisture data is not readily available so that this study utilized a Gaussian Mixture Non-Homogeneous Hidden Markov chain Model (GM-NHMM) model to simulate the soil moisture using the observed precipitation and temperature ranging from 1973 to 2014. The GM-NHMM model showed a better performance in terms of reproducing key statistics of soil moisture, compared to a multiple regression model. Finally, a bivariate frequency analysis was performed for the drought duration and severity, and it was confirmed that the recent droughts over Jeollabuk-do in 2015 have a 20-year return period.

A study on the prediction of korean NPL market return (한국 NPL시장 수익률 예측에 관한 연구)

  • Lee, Hyeon Su;Jeong, Seung Hwan;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business. In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed. Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)). The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached. This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%. In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best. Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.