• Title/Summary/Keyword: bivariate return period

Search Result 29, Processing Time 0.025 seconds

Probabilistic Analysis of Independent Storm Events: 2. Return Periods of Storm Events (독립호우사상의 확률론적 해석 : 2. 호우사상의 재현기간)

  • Yoo, Chul-Sang;Park, Min-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.137-146
    • /
    • 2011
  • In this study, annual maximum storm events are evaluated by applying the bivariate extremal distribution. Rainfall quantiles of probabilistic storm event are calculated using OR case joint return period, AND case joint return period and interval conditional joint return period. The difference between each of three joint return periods was explained by the quadrant which shows probability calculation concept in the bivariate frequency analysis. Rainfall quantiles under AND case joint return periods are similar to rainfall depths in the univariate frequency analysis. The probabilistic storm events overcome the primary limitation of conventional univariate frequency analysis. The application of these storm event analysis provides a simple, statistically efficient means of characterizing frequency of extreme storm event.

Tail dependence of Bivariate Copulas for Drought Severity and Duration

  • Lee, Tae-Sam;Modarres, Reza;Ouarda, Taha B.M.J.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.571-575
    • /
    • 2010
  • Drought is a natural hazard with different properties that are usually dependent to each other. Therefore, a multivariate model is often used for drought frequency analysis. The Copula based bivariate drought severity and duration frequency analysis is applied in the current study in order to show the effect of tail behavior of drought severity and duration on the selection of a copula function for drought bivariate frequency analysis. Four copula functions, namely Clayton, Gumbel, Frank and Gaussian, were fitted to drought data of four stations in Iran and Canada in different climate regions. The drought data are calculated based on standardized precipitation index time series. The performance of different copula functions is evaluated by estimating drought bivariate return periods in two cases, [$D{\geq}d$ and $S{\geq}s$] and [$D{\geq}d$ or $S{\geq}s$]. The bivariate return period analysis indicates the behavior of the tail of the copula functions on the selection of the best bivariate model for drought analysis.

  • PDF

Derived I-D-F Curve in Seoul Using Bivariate Precipitation Frequency Analysis (이변량 강우 빈도해석을 이용한 서울지역 I-D-F 곡선 유도)

  • Kwon, Young-Moon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.155-162
    • /
    • 2009
  • Univariate frequency analyses are widely used in practical hydrologic design. However, a storm event is usually characterized by amount, intensity, and duration of the storm. To fully understand these characteristics and to use them appropriately in hydrologic design, a multivariate statistical approach is necessary. This study applied a Gumbel mixed model to a bivariate storm frequency analysis using hourly rainfall data collected for 46 years at the Seoul rainfall gauge station in Korea. This study estimated bivariate return periods of a storm such as joint return periods and conditional return periods based on the estimation of joint cumulative distribution functions of storm characteristics. These information on statistical behaviors of a storm can be of great usefulness in the analysis and assessment of the risk associated with hydrologic design problems.

Dynamic Relationship between Stock Prices and Exchange Rates: Evidence from Nepal

  • Kim, Do-Hyun;Subedi, Shyam;Chung, Sang-Kuck
    • International Area Studies Review
    • /
    • v.20 no.3
    • /
    • pp.123-144
    • /
    • 2016
  • This paper investigates the linkages between returns both in foreign exchange and stock markets, and uncertainties in two markets using daily data for the period of 16 July 2004 to 30 June 2014 in Nepalese economy. Four hypotheses are tested about how uncertainty influences the stock index and exchange rates. From the empirical results, a bivariate EGARCH-M model is the best to explain the volatility in the two markets. There is a negative relationship from the exchange rates return to stock price return. Empirical results do provide strong empirical confirmation that negative effect of stock index uncertainty and positive effect of exchange rates uncertainty on average stock index. GARCH-in-mean variables in AR modeling are significant and shows that there is positive effect of exchange rates uncertainty and negative effect of stock index uncertainty on average exchange rates. Stock index shocks have longer lived effects on uncertainty in the stock market than exchange rates shock have on uncertainly in the foreign exchange market. The effect of the last period's shock, volatility is more sensitive to its own lagged values.

Bivariate Frequency Analysis of Dam Storage Capacity before and after the Rainy Season and Evaluation on Water Supply Capacity (우기 전후 댐 저수용량에 대한 이변량 빈도해석과 댐의 용수공급능력 평가)

  • Jun, Changhyun;Yoo, Chulsang;Zhu, Ju Hua;Lee, Gwang-Man
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1199-1212
    • /
    • 2014
  • This study proposes an evaluation method of water supply capacity of a dam, which uses the concept of return period by conducting bivariate frequency analysis of dam storage capacity. The proposed method was applied to the Daecheong Dam for the evaluation. Additionally, the return periods of Daecheong Dam were estimated for the representative drought events in Korea, whose results were also reviewed. Summarizing the results is as follows. First, this study evaluated several climatological factors related to the water supply capacity of dams in Korea to conduct the bivariate frequency analysis and selected the storage on May and the storage difference between June and October as variables for analysis. Second, as an evaluation result of the water supply capacity of the Daecheong Dam, it was found that the Daecheong Dam secures the water supply capacity under 20 years of return period. Finally, it was also confirmed that the proposed method in this study is valid to analyze and estimate the return period of representative drought events occurred in the Korean peninsula.

Can Big Data Help Predict Financial Market Dynamics?: Evidence from the Korean Stock Market

  • Pyo, Dong-Jin
    • East Asian Economic Review
    • /
    • v.21 no.2
    • /
    • pp.147-165
    • /
    • 2017
  • This study quantifies the dynamic interrelationship between the KOSPI index return and search query data derived from the Naver DataLab. The empirical estimation using a bivariate GARCH model reveals that negative contemporaneous correlations between the stock return and the search frequency prevail during the sample period. Meanwhile, the search frequency has a negative association with the one-week- ahead stock return but not vice versa. In addition to identifying dynamic correlations, the paper also aims to serve as a test bed in which the existence of profitable trading strategies based on big data is explored. Specifically, the strategy interpreting the heightened investor attention as a negative signal for future returns appears to have been superior to the benchmark strategy in terms of the expected utility over wealth. This paper also demonstrates that the big data-based option trading strategy might be able to beat the market under certain conditions. These results highlight the possibility of big data as a potential source-which has been left largely untapped-for establishing profitable trading strategies as well as developing insights on stock market dynamics.

Evaluation of Flood Severity Using Bivariate Gumbel Mixed Model (이변량 Gumbel 혼합모형을 이용한 홍수심도 평가)

  • Lee, Jeong-Ho;Chung, Gun-Hui;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.725-736
    • /
    • 2009
  • A flood event can be defined by three characteristics; peak discharge, total flood volume, and flood duration, which are correlated each other. However, a conventional flood frequency analysis for the hydrological plan, design, and operation has focused on evaluating only the amount of peak discharge. The interpretation of this univariate flood frequency analysis has a limitation in describing the complex probability behavior of flood events. This study proposed a bivariate flood frequency analysis using a Gumbel mixed model for the flood evaluation. A time series of annual flood events was extracted from observations of inflow to the Soyang River Dam and the Daechung Dam, respectively. The joint probability distribution and return period were derived from the relationship between the amount of peak discharge and the total volume of flood runoff. The applicability of the Gumbel mixed model was tested by comparing the return periods acquired from the proposed bivariate analysis and the conventional univariate analysis.

Evaluation of Flood Events Considering Correlation between Flood Event Attributes (홍수사상 요소의 상관성을 고려한 홍수사상의 평가)

  • Lee, Jeong Ho;Yoo, Ji Young;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.257-267
    • /
    • 2010
  • A flood event can be characterized by three attributes such as peak discharge, total flood volume, and flood duration, which are correlated each other. However, the amount of peak discharge is only used to evaluate the flood events for the hydrological plan and design. The univariate analysis has a limitation in describing the complex probability behavior of flood events. Thus, the univariate analysis cannot derive satisfying results in flood frequency analysis. This study proposed bivariate flood frequency analysis methods for evaluating flood events considering correlations among attributes of flood events. Parametric distributions such as Gumbel mixed model and bivariate gamma distribution, and a non-parametric model using a bivariate kernel function were introduced in this study. A time series of annual flood events were extracted from observations of inflow to the Soyang River Dam and the Daechung Dam, respectively. The joint probability distributions and return periods were derived from the relationship between the amount of peak discharge and the total volume of flood runoff. Applicabilities of bivariate flood frequency analysis were examined by comparing the return period acquired from the proposed bivariate analyses and the conventional univariate analysis.

Drought Frequency Analysis Using Hidden Markov Chain Model and Bivariate Copula Function (Hidden Markov Chain 모형과 이변량 코플라함수를 이용한 가뭄빈도분석)

  • Chun, Si-Young;Kim, Yong-Tak;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.969-979
    • /
    • 2015
  • This study applied a probabilistic-based hidden Markov model (HMM) to better characterize drought patterns. In addition, a copula-based bivariate drought frequency analysis was employed to further investigate return periods of the current drought condition in year 2015. The obtained results revealed that western Kangwon area was generally more vulnerable to drought risk than eastern Kangwon area using the 40-year data. Imjin-river watershed including Cheorwon area was the most vulnerable area in terms of severe drought events. Four stations in Han-river watershed showed a joint return period exceeding 1,000 years associated with the drought duration and severity in 2014-2015. Especially, current drought status in Northern Han-river and Imjin-river watershed is most severe drought exceeding 100-year return period.

Determination of drought events considering the possibility of relieving drought and estimation of design drought severity (가뭄해갈 가능성을 고려한 가뭄사상의 결정 및 확률 가뭄심도 산정)

  • Yoo, Ji Young;Yu, Ji Soo;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.275-282
    • /
    • 2016
  • The objective of this study is to propose a new method to determine the drought event and the design drought severity. In order to define a drought event from precipitation data, theory of run was applied with the cumulative rainfall deficit. When we have a large amount of rainfall over the threshold level, in this study, we compare with the previous cumulative rainfall deficit to determine whether the drought is relieved or not. The recurrence characteristics of the drought severity on the specific duration was analyzed by the conditional bivariate copula function and confidence intervals were estimated to quantify uncertainties. The methodology was applied to Seoul station with the historical dataset (1909~2015). It was observed that the past droughts considered as extreme hydrological events had from 10 to 50 years of return period. On the other hand, the current on-going drought event started from 2013 showed the significantly higher return period. It is expected that the result of this study may be utilized as the reliable criteria based on the concept of return period for the drought contingency plan.