• Title/Summary/Keyword: bitrate

Search Result 247, Processing Time 0.027 seconds

Fast Distributed Video Coding using Parallel LDPCA Encoding (병렬 LDPCA 채널코드 부호화 방법을 사용한 고속 분산비디오부호화)

  • Park, Jong-Bin;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.144-154
    • /
    • 2011
  • In this paper, we propose a parallel LDPCA encoding method for fast transform-domain Wyner-Ziv video encoding which is suitable in an ultra fast and low power video encoding. The conventional transform-domain Wyner-Ziv video encoding performs LDPCA channel coding of quantized transform coefficients in bitplane-serial fashion, which takes about 60% of total encoding time, and this computational complexity becomes severer as the bitrate increases. The proposed method binds several bitplanes into one packed message and carries out the LDPCA encoding in parallel. The proposed LDPCA encoding method improves the encoding speed by 8 ~ 55 times. In the experiment, the proposed Wyner-Ziv encoder can encode 700 ~ 2,300 QCIF size frames per second with GOP=64. The method can be applied to the pixel-domain Wyner-Ziv encoder using LDPCA, and has a wide scope of application.

An Efficient Intra Prediction Mode Decision for Spatial Enhancement Layer (공간 향상 계층에서 효율적인 화면 내 예측 모드 선택 방법)

  • Myung, Jin-Su;Park, Sung-Jae;Oh, Seoung-Jun;Sim, Dong-Gyu;Kim, Byung-Gyu
    • Journal of Broadcast Engineering
    • /
    • v.12 no.5
    • /
    • pp.491-502
    • /
    • 2007
  • In this parer, we propose an efficient intra prediction mode decision scheme in Scalable Video Coding(SVC) which is an emerging video coding standard as an extension of H.264/MPEG-4 AVC(Advanced Video Coding). The proposed method in base on the characteristic of macroblock smoothness follows the statistical analysis of intra prediction mode in an enhancement layer and it decides a candidate intra prediction mode. We also propose an early termination scheme for Intra_BL mode decision where the RD cost value of Intra_BL is utilized. Simulation results show that the proposed method reduces 54.67% of the computation complexity of intra prediction coding, while the degradation in video quality is negligible; for low QP values, the average PSNR loss is very negligible, equivalently the bit rate increases by 0.011%. For high QP values, the average PSNR loss is less than 0.01dB, which equals to 0.249% increase in bitrate.

Gradient-Based Methods of Fast Intra Mode Decision and Block Partitioning in VVC (VVC의 기울기 기반 화면내 예측모드 결정 및 블록분할 고속화 기법)

  • Yoon, Yong-Uk;Park, Dohyeon;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.338-345
    • /
    • 2020
  • Versatile Video Coding (VVC), which has been developing as a next generation video coding standard, has adopted various techniques to achieve more than twice the compression performance of HEVC (High Efficiency Video Coding). The recently released VVC Test Model (VTM) shows 38% Bjontegaard Delta bitrate (BD-rate) improvement and 9x/1.6x encoding/decoding complexity over HEVC. In order to reduce such increased complexity, various fast algorithms have been proposed. In this paper, gradient-based methods of fast intra mode decision and block splitting are presented. Experimental results show that, compared to VTM6.0, the proposed method gives up to 65% encoding time reduction with 3.54% BD-rate loss in All-Intra (AI) configuration.

Temporal Prediction Structure for Multi-view Video Coding (다시점 비디오 부호화를 위한 시간적 예측 구조)

  • Yoon, Hyo-Sun;Kim, Mi-Young
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1093-1101
    • /
    • 2012
  • Multi-view video is obtained by capturing one three-dimensional scene with many cameras at different positions. Multi-view video coding exploits inter-view correlations among pictures of neighboring views and temporal correlations among pictures of the same view. Multi-view video coding which uses many cameras requires a method to reduce the computational complexity. In this paper, we proposed an efficient prediction structure to improve performance of multi-view video coding. The proposed prediction structure exploits an average distance between the current picture and its reference pictures. The proposed prediction structure divides every GOP into several small groups to decide the maximum index of hierarchical B layer and the number of pictures of each B layer. Experimental results show that the proposed prediction structure shows good performance in image quality and bit-rates. When compared to the performance of hierarchical B pictures of Fraunhofer-HHI, the proposed prediction structure achieved 0.07~0.13 (dB) of PSNR gain and was down by 6.5(Kbps) in bitrate.

A Bitrate Control considering Interframe Variance of Image for H.264/AVC (화면간 영상 변화량을 고려한 H.264/AVC 비트율 제어 방법)

  • Son Nam-Rye;Lee Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.245-254
    • /
    • 2006
  • In this work, a new rate control algorithm for transmission of H.264/AVC video bit stream through CBR(constant bit rate) channel is proposed. The proposed algorithm predicts target bit rate and MAD(mean of absolute difference) for current frame considering image complexity variance between neighboring backward and current images. In details, respective linear regression analysis for MAD and encoded bit rate against image complexity variance produce correlation parameters. Additionally, it uses frame skip technique to maintain bit stream within a manageable range and protect buffer from overflow or underflow. Implementation and experimental results show that the proposed algorithm can provide accurate bit allocation, and can effectively visual degradation after scene changes. Also our proposed algorithm encodes the video sequences with less frame skipping compared to the existing rate control for H.264/AVC.

Fast Mode Decision Method for HEVC in Depth Video (HEVC를 위한 깊이 영상 고속 모드 결정 방법)

  • Yoon, Da-Hyun;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.51-56
    • /
    • 2012
  • In order to reduce the complexity of HEVC, we propose a fast mode decision algorithm in depth videos. Since almost CU mode is decided as SKIP mode in depth-continuity regions, we design the algorithm using the property of depth videos. If cost of SKIP is smaller than the multiplication between the threshold for EarlySKIP and average cost of SKIP, EarlySKIP is performed. Otherwise, we calculate Inter $2N{\times}2N$. Then, if motion vector of Inter $2N{\times}2N$ is 0 and variance of CU is smaller than threshold for inter, we skip Inter $2N{\times}N$, Inter $N{\times}2N$. Experimental results show that our proposed algorithm reduces the encoding time from 39% to 82% with negligible PSNR loss and bitrate increase.

Fast Intra Mode Selection Algorithm Based on Edge Activity in Transform Domain for H.264/AVC Video (변환영역에서의 에지활동도에 기반한 H.264/AVC 고속 인트라모드 선택 방법)

  • Seo, Jae-Sung;Kim, Dong-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.790-800
    • /
    • 2009
  • For the improvement of coding efficiency, the H.264/AYC standard uses new coding tools such as 1/4-pel-accurate motion estimation, multiple references, intra prediction, loop filter, variable block size etc. Using these coding tools, H.264/AYC has achieved significant improvements from rate-distortion point of view compared to existing standards. However, the encoder complexity was greatly increased due to these coding tools. We focus on the complexity reduction method of intra macroblock mode selection. The proposed algorithm for fast intra mode selection calculates the edge activity in transform domain, and performs fast encoding of intra frame in H.264/AYC through the fast prediction mode selection of intra4x4 and chrominance blocks. Simulation results show that the proposed method saves about 59.76% for QCIF sequences and 65.03% for CIF sequences of total encoding time, while bitrate increase and PSNR decrease are very small.

Fast Inter/Intra Mode Decision Algorithm in H.264/AVC Considering Coding Efficiency (부호화 효율을 고려한 고속 인터/인트라 모드 결정 알고리즘)

  • Kim, Ji-Woong;Kim, Yong-Kwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.720-728
    • /
    • 2007
  • For the improvement of coding efficiency, the H.264/AVC video coding standard employs new coding tools compared with existing coding standards. However, due to these new coding tools, the complexity of H.2641AVC encoder is greatly increased. Specially, Inter/Intra mode decision method of H.264/AVC using RDO(rate-distortion optimization) technique is one of the most complex parts in H.264/AVC. In this paper, we focus on the complexity reduction in macroblock mode decision considering coding efficiency. From the simulation results, the proposed algorithm reduce the encoding time by maximum 80% of total, and reduce the bitrate of the overall sequences by $8{\sim}10%$ on the average compared with existing coding methods.

An adaptive frequency-selective weighted prediction of residual signal for efficient RGB video compression coding (능률적 RGB 비디오 압축 부호화를 위한 잔여신호의 적응적 주파수-선택 가중 예측 기법)

  • Jeong, Jin-Woo;Choe, Yoon-Sik;Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.527-539
    • /
    • 2010
  • Most video coding systems use YCbCr color space for their inputs, but RGB space is more preferred in the field of high fidelity video because the compression gain from YCbCr becomes disappeared in the high quality operation region. In order to improve the coding performance of RGB video signal, this paper presents an adaptive frequency-selective weighted prediction algorithm. Based on the sign agreement and the strength of frequency-domain correlation of residual color planes, the proposed scheme adaptively selects the frequency elements as well as the corresponding prediction weights for better utilization of inter-plane correlation of RGB signal. Experimental results showed that the proposed algorithm improves the coding gain of around 13% bitrate reduction, on average, compared to the common mode of 4:4:4 video coding in the state-of-the-art video compression standard, H.264/AVC.

CPU Parallel Processing and GPU-accelerated Processing of UHD Video Sequence using HEVC (HEVC를 이용한 UHD 영상의 CPU 병렬처리 및 GPU가속처리)

  • Hong, Sung-Wook;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.816-822
    • /
    • 2013
  • The latest video coding standard HEVC was developed by the joint work of JCT-VC(Joint Collaborative Team on Video Coding) from ITU-T VCEG and ISO/IEC MPEG. The HEVC standard reduces the BD-Bitrate of about 50% compared with the H.264/AVC standard. However, using the various methods for obtaining the coding gains has increased complexity problems. The proposed method reduces the complexity of HEVC by using both CPU parallel processing and GPU-accelerated processing. The experiment result for UHD($3840{\times}2144$) video sequences achieves 15fps encoding/decoding performance by applying the proposed method. Sooner or later, we expect that the H/W speedup of data transfer rates between CPU and GPU will result in reducing the encoding/decoding times much more.