• Title/Summary/Keyword: bitmap-based caching

Search Result 2, Processing Time 0.02 seconds

Bitmap-based Prefix Caching for Fast IP Lookup

  • Kim, Jinsoo;Ko, Myeong-Cheol;Nam, Junghyun;Kim, Junghwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.873-889
    • /
    • 2014
  • IP address lookup is very crucial in performance of routers. Several works have been done on prefix caching to enhance the performance of IP address lookup. Since a prefix represents a range of IP addresses, a prefix cache shows better performance than an IP address cache. However, not every prefix is cacheable in itself. In a prefix cache it causes false hit to cache a non-leaf prefix because there is possibly the longer matching prefix in the routing table. Prefix expansion techniques such as complete prefix tree expansion (CPTE) make it possible to cache the non-leaf prefixes as the expanded forms, but it is hard to manage the expanded prefixes. The expanded prefixes sometimes incur a great deal of update overhead in a routing table. We propose a bitmap-based prefix cache (BMCache) to provide low update overhead as well as low cache miss ratio. The proposed scheme does not have any expanded prefixes in the routing table, but it can expand a non-leaf prefix using a bitmap on caching time. The trace-driven simulation shows that BMCache has very low miss ratio in spite of its low update overhead compared to other schemes.

A Hybrid Prefix Cashing Scheme for Efficient IP Address Lookup

  • Kim, Jinsoo;Kim, Junghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.45-52
    • /
    • 2015
  • We propose a hybrid prefix caching scheme to enable high speed IP address lookup. All prefixes loaded in a prefix cache should not be overlapped in address range for correct IP lookup. So, every non-leaf prefix needs to be expanded not so as to be overlapped. The shorter expanded prefix is more preferable because it can cover wider address range just as an single entry in a prefix cache. We exploits advantages of two dynamic prefix expansion techniques, bounded prefix expansion technique and bitmap-based prefix expansion technique. The proposed scheme uses dual bound values whereas just one bound value is used in bounded prefix expansion. Our elaborated technique make the dual bound values be associated with several subtries flexibly using bitmap information, rather than with fixed subtries. We evaluate the performance of the proposed scheme in terms of the average length of the expanded prefixes and cache miss ratio. The experiment results show the proposed scheme has lower cache miss ratio than other previous schemes including both bounded prefix expansion and bitmap-based expansion irrespective of the cache size.