• Title/Summary/Keyword: bistatic radar

Search Result 54, Processing Time 0.033 seconds

Analysis of Receiving Responses for a Bistatic Ground-Penetrating Radar System by Using Equivalent Network Model (등가회로망 모델을 이용한 Bistatic 지하탐사 레이더 시스템의 수신응답 해석)

  • Hyeon, Seung-Yeop;Kim, Sang-Uk;Kim, Se-Yun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.6
    • /
    • pp.44-53
    • /
    • 2000
  • The receiving responses of a bistatic GPR system are analyzed by using three-dimensional FDTD method and equivalent network model. The conventional delta-gap feed model may be inaccurate because of neglecting the impedance matching characteristics between the antenna and the transmission line. In this paper, the feed model is improved by considering the physical characteristics of the actual GPR. The actually received voltage is calculated by employing the equivalent network model in angular frequency-domain, which is composed by using the results of three-dimensional FDTD analysis for an actual bistatic GPR system. The validity of the presented model is assured by showing the convergence of the computed results to the measured data.

  • PDF

Analysis of Bistatic Clutter Structure through Simulation (시뮬레이션에 의한 바이스태틱 클러터 구조 분석)

  • Jeon, Hyeon-mu;Chung, Yong-Seek;Chung, Won-zoo;Kim, Jong-mann;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.96-99
    • /
    • 2016
  • Generally, bistatic clutter, contrary to the monostatic clutter, has nonlinear structure in Angle-Doppler domain due to the noncooperative motion of the transmitter and the receiver. In this paper, we first simulate the bistatic clutter structure resulting from the relative motion of the transmitter and the receiver and then analyze their relations through the bistatic clutter structure in Angle-Doppler domain. Also, we show the operation condition of the transmitter and the receiver leading to low rank of a covariance matrix of the bistatic clutter.

Analysis of Monostatic/Bistatic Radar Cross Section of Multi-target for Target Signals Simulation (항적 신호 모의를 위한 다기종 모노스태틱/바이스태틱 레이다반사면적 분석)

  • Park, Jun-Sik;Chi, Soung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.789-798
    • /
    • 2021
  • In this study, for the purpose of collecting and analyzing target-specific RCS data of target signals simulator for verification/improvement of radar system performance, VHF band monostatic/bistatic RCS of civil aircraft(B-747, B-737) and fighter(F-16) models were analyzed by EM simulation tool. In order to reduce the RCS analysis time, the analysis time and RCS data were compared and cross-verified. Also, the analysis range was selected by examining the interpolation error according to the analysis angle resolution. The RCS data obtained for each model were analyzed separately by the incident/reflection elevation angle and frequency. The RCS characteristics according to the shape of the aircraft and the incident/reflection azimuth angle were described. Finally, the statistical RCS distribution value of each model is presented through RCS distribution histogram analysis. In the future, the RCS database obtained by this study will be used for the target signals simulator of the VHF band radar system.

Orthogonal Waveform Space Projection Method for Adaptive Jammer Suppression

  • Lee, Kang-In;Yoon, Hojun;Kim, Jongmann;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.868-874
    • /
    • 2018
  • In this paper, we propose a new jammer suppression algorithm that uses orthogonal waveform space projection (OWSP) processing for a multiple input multiple output (MIMO) radar system exposed to a jamming signal. Generally, a conventional suppression algorithm based on adaptive beamforming (ABF) needs a covariance matrix composed of the jammer and noise only. By exploiting the orthogonality of the transmitting waveforms of MIMO, we can construct a transmitting waveform space (TWS). Then, using the OWSP processing, we can build a space orthogonal to the TWS that contains no SOI. By excluding the SOI from the received signal, even in the case that contains the SOI and jamming signal, the proposed algorithm makes it possible to evaluate the covariance matrix for ABF. We applied the proposed OWSP processing to suppressing the jamming signal in bistatic MIMO radar. We verified the performance of the proposed algorithm by comparing the SINR loss to that of the ideal covariance matrix composed of the jammer and noise only. We also derived the computational complexity of the proposed algorithm and compared the estimation of the DOD and DOA using the SOI with those using the generalized likelihood ratio test (GLRT) algorithm.

LTE-Based Passive Bistatic Radar System for Detection of Ground-Moving Targets

  • Raja Abdullah, Raja Syamsul Azmir;Salah, Asem Ahmad;Ismail, Alyani;Hashim, Fazirulhisyam;Abdul Rashid, Nur Emileen;Abdul Aziz, Noor Hafizah
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.302-313
    • /
    • 2016
  • Use of a passive bistatic radar (PBR) system in the surveillance or monitoring of an area has its advantages. For example, a PBR system is able to utilize any available signal of opportunity (for example, broadcasting, communication, or radio navigation signals) for the purposes of surveillance. With this in mind, there are potentially many research areas to be explored; in particular, the capability of signals from existing and future communication systems, such as 4G and 5G. Long-Term Evolution (LTE) is the world's most current communication system. Given this fact, this paper presents the latest feasibility studies and experimental results from using LTE signals in PBR applications. Details are provided about aspects such as signal characteristics, experimental configurations, and SNR studies. Six experimental scenarios are carried out to investigate the detection performance of our proposed system on ground-moving targets. The ability to detect is demonstrated through use of the cross-ambiguity function. The detection results suggest that LTE signals are suitable as a source signal for PBR.

Extension of Range Migration Algorithm for Airborne Single Track Bistatic Spotlight SAR Imaging (하나의 경로를 가진 항공기 탑재형 Bistatic Spotlight SAR 영상형성을 위한 Range Migration Algorithm의 확장)

  • Shin, Hee-Sub;Jeon, Jae-Han;Lim, Jong-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.165-166
    • /
    • 2008
  • Bistatic spotlight synthetic aperture radar(BSSAR) with single track configuration uses the transmitter and the receiver which travel along the single track such as the leader-follower. For the BSSAR imaging, we modify the range migration algorithm. In time domain, we make the monostatic SAR using shifting of path, Then, in frequency domain, we compensate the separated distance between the scene center and the flight path using the principle of the stationary phase (PSP).

  • PDF

Rake-Based Cellular Radar Receiver Design for Moving Target Detection in Multipath Channel

  • Kim, Yeejung;Jeong, Myungdeuk;Han, Youngnam
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.799-807
    • /
    • 2014
  • In this paper, we design a rake-based cellular radar receiver (CRR) scheme to detect a moving target located in a multipath environment. The modules of Doppler filter banks, threshold level test, and target detection module are newly introduced into the conventional rake receiver so that it can function as a radar system. The proposed CRR tests the Doppler-shift frequency and signal-to-noise ratio of the received signal against predefined threshold levels to determine detection and then calculates target velocities and ranges. The system performance is evaluated in terms of detection probability and the maximum detection range under a Nakagami-n channel that reflects the multipath environment.

Design of High-Sensitivity Compact Resonator using Interdigital-Capacitor Structure for Chipless RFID Applications (인터디지털-커패시터 구조를 이용한 Chipless RFID용 고감도 소형 공진기 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.90-95
    • /
    • 2021
  • In this paper, the design method for a high-sensitivity compact resonator for chipless RFID tags is proposed. Proposed high-sensitivity compact resonator uses an interdigital-capacitor structure instead of a capacitor-shaped strip structure in a conventional ELC resonator. The length of the electrode plate of the IDC structure is longer than that of the conventional capacitor-shaped structure, resulting in a larger equivalent capacitance of the resonator. This can lower the resonant peak frequency of the RCS characteristic. Two resonators with the same length of the square loop and the width of the strip are fabricated on an RF-301 substrate with a thickness of 0.8 mm. The experiment results show that the resonant peak frequency and value of the bistatic RCS for the ELC resonator were 4.305 GHz and -30.39 dBsm, whereas those of the proposed IDC resonator were 3.295 GHz and -36.91 dBsm. Therefore, the size of the resonator is reduced by 23.5% based on the measured resonant peak frequency of the RCS characteristic.

RCS Analysis for Improving the Performance of the Skin Tracking of KSLV-II (한국형 발사체의 스킨 추적 성능 향상을 위한 RCS 분석)

  • Lee, Hyun-Seung;Lee, Eun-Gyu;Lim, Jeong-Taek;Choi, Jee-Hwan;Kim, Chul-Young
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.566-572
    • /
    • 2015
  • In this paper, we calculate monostatic RCS(Radar Cross Section) and bistatic RCS for improving the Performance of the skin tracking of KSLV-II and the results were compared. EM(Electromagnetic) simulator was used for numerical analysis. For the two paths(L, S), after the vehicle was launched, RCS was calculated for region from 280 to 400 seconds. In the case of using the bistatic radar system, when the vehicle was launched to the L path, tracking performance was better when we receive RCS in Jeju than in Goheung. When the vehicle was launched to the S path, tracking performance was better when we receive RCS in Goheung than in Jeju. In the case of using the monostatic radar system, when the vehicle was launched to the L path, tracking performance was better when we receive RCS in Goheung than in Jeju. When the vehicle was launched to the S path, tracking performance was better when we receive RCS in Jeju than in Goheung.

DOD/DOA Estimation for Bistatic MIMO Radar Using 2-D Matrix Pencil Method (2차원 Matrix Pencil Method 기반의 바이스태틱 MIMO 레이더 표적 도래각 추정)

  • Lee, Kang-In;Kang, Wonjune;Yang, Hoon-Gee;Chung, Wonzoo;Kim, Jong Mann;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.782-790
    • /
    • 2014
  • In this paper, we apply the 2-D Matrix Pencil Method(MPM) to the estimation of the direction of arrival(DOA) of multiple signals of interest(SOIs) in bistatic MIMO radar. The 2-D MPM shows remarkable performance under a low SNR environment and low computational complexity to estimate the DOA of multiple SOIs. Also, it is possible to estimate the direction of departure(DOD) which is an angle from transmitter to target. To verify the proposed algorithm, we applied the proposed algorithm to a uniformly spaced linear array(ULA) and compared the RMSE(Root Mean Square Error) of DOA and DOD under the various SNR with those of the 2-D Capon algorithm.