DOI QR코드

DOI QR Code

Design of High-Sensitivity Compact Resonator using Interdigital-Capacitor Structure for Chipless RFID Applications

인터디지털-커패시터 구조를 이용한 Chipless RFID용 고감도 소형 공진기 설계

  • Yeo, Junho (School of ICT Convergence, Daegu University) ;
  • Lee, Jong-Ig (Department of Applied Electronics Engineering, Dongseo University)
  • Received : 2021.01.25
  • Accepted : 2021.02.17
  • Published : 2021.02.28

Abstract

In this paper, the design method for a high-sensitivity compact resonator for chipless RFID tags is proposed. Proposed high-sensitivity compact resonator uses an interdigital-capacitor structure instead of a capacitor-shaped strip structure in a conventional ELC resonator. The length of the electrode plate of the IDC structure is longer than that of the conventional capacitor-shaped structure, resulting in a larger equivalent capacitance of the resonator. This can lower the resonant peak frequency of the RCS characteristic. Two resonators with the same length of the square loop and the width of the strip are fabricated on an RF-301 substrate with a thickness of 0.8 mm. The experiment results show that the resonant peak frequency and value of the bistatic RCS for the ELC resonator were 4.305 GHz and -30.39 dBsm, whereas those of the proposed IDC resonator were 3.295 GHz and -36.91 dBsm. Therefore, the size of the resonator is reduced by 23.5% based on the measured resonant peak frequency of the RCS characteristic.

본 논문에서는 chipless RFID (radio frequency identification) 태그용 고감도 소형 공진기의 설계 방법을 제안하였다. 제안된 고감도 소형 공진기는 기존의 전계-결합(ELC; electric field-coupled) 공진기에서 커패시터 모양의 스트립 구조 대신에 인터디지털-커패시터(IDC; interdigital-capacitor) 구조를 사용하였다. IDC 구조의 극판 길이가 기존의 커패시터 모양 구조 보다 더 길어 공진기의 등가 커패시턴스가 더 커지고, 이로 인해 레이다 단면적(RCS; radar cross section)의 공진 피크 주파수를 낮출 수 있다. 정사각형 루프의 길이와 스트립의 폭이 같은 두 공진기를 두께 0.8 mm의 RF-301 기판에 제작하였다. 실험 결과, ELC 공진기는 bistatic RCS의 공진 피크 주파수와 값은 4.305 GHz와 -30.39 dBsm이었다. 제안된 IDC 공진기의 경우 bistatic RCS의 공진 피크 주파수와 값은 3.295 GHz와 -36.91 dBsm이었다. 따라서 측정 공진 피크 주파수를 기준으로 공진기 크기가 23.5% 정도 소형화되었다.

Keywords

References

  1. K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd ed. Hoboken, NJ: Wiley-Blackwell, 2010.
  2. How the use of RFID improves the supply chain, visibility, and inventory optimization [Internet]. Available: https://trans.info/en/how-the-use-of-rfid-improves-the-supply-chain-visibility-and-inventory-optimization-171088
  3. Complete Guide to RFID: Benefits, Applications, and Challenges [Internet]. Available: https://dzone.com/articles/complete-guide-to-rfid-its-application-to-supply-c
  4. WHERE DO YOU FIND RFID TECHNOLOGY IN EVERYDAY LIFE? [Internet]. Available: https://www.trace-id.com/where-do-you-find-rfid-technology-in-everyday-life/
  5. T. Athauda and N. Karmakar, "Chipped versus chipless RF identification: A comprehensive review," IEEE Microwave Magazine, Vol. 20, No. 9, pp. 47-57, Sep. 2019. https://doi.org/10.1109/mmm.2019.2922118
  6. C. Herrojo, F. Paredes, J. Mata-Contreras, and F. Martin, "Chipless-RFID: A review and recent developments," Sensors, Vol. 19, No. 15, pp. 3385, 2019. https://doi.org/10.3390/s19153385
  7. E. M. Amin, N. C. Karmakar, B. W. Jensen, "Fully printable chipless RFID multi-parameter sensor," Sensors and Actuators A: Physical, Vol. 248, pp. 223-232, Sep. 2016. https://doi.org/10.1016/j.sna.2016.06.014
  8. A. Vena, E. Perret, and S. Tedjini, "Chipless RFID tag using hybrid coding technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, pp. 3356-3364, Dec. 2011. https://doi.org/10.1109/TMTT.2011.2171001