• Title/Summary/Keyword: bisphenol F

Search Result 56, Processing Time 0.024 seconds

The Bisphenol A: A Modulator of Pregnancy in Rats

  • Kim, Pan-Gyi;Lee, Na-Rae;Hwang, Seong-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.4
    • /
    • pp.27-34
    • /
    • 2003
  • Bisphenol A is used in the manufacture of epoxy, polycarbonate, and corrosion-resistant unsaturated polyester-styrene resins required for food packaging materials in industrial processing. Some reports indicated the possibility of harmful effects on rats. In this study was used a method for the determination of bisphenol A in blood according to the OSHA High Performance Liquid Chromatography (HPLC) guideline. The method involved blood extraction using methylene chloride. And it was evaluated developmental and teratogenic effects in pregnant rats and second generation. The results obtained were as follows. There was a significant increase in the body weights and treated groups F1 female in liver, spleen, kidney, but according to dose-response. F1 female rat's relative body weight and absolute body weight are not different. There was a significant increase liver, spleen, kidney organ weight and reproductive organ weight epididymis, prostate gland in F1 male rats. There was a proestrous in pregnant rat, group 200 $\mu\textrm{g}$/kg, 2000 $\mu\textrm{g}$/kg, 20,000 $\mu\textrm{g}$/kg. The effect on rat treated with bisphenol A decrease organ weight and reproductive organ weight. Identification and quantitation were performed with using HPLC C18 column and using at retention time 5.5 min. The results of the detection of bisphenol A were at 20,000 $\mu\textrm{g}$/kg in average 1 $\mu\textrm{g}$/ml, 200 $\mu\textrm{g}$/kg average in 0.9 $\mu\textrm{g}$/ml blood samples. From those results, it could be concluded that the effects of pregnant rat and second generation(F1) by bisphenol A treatment during lactational period were estrogenic and bisphenol A was remained in serum at low level.

Maternal Exposure to Bisphenol A Impacts on Fecundity in F1 and F2 Generations in Drosophila melanogaster

  • Kim, Sohee;Kang, Kyong-hwa;Koh, Hyongjong
    • Development and Reproduction
    • /
    • v.25 no.3
    • /
    • pp.193-197
    • /
    • 2021
  • In previous reports, bisphenol A (BPA) exposure affects reproductive function in Drosophila melanogaster females. To test the maternal effect of BPA exposure on fly reproductive function, F0 mothers were exposed to 0, 0.1, 1, and 10 mg/L of BPA and the fecundity in F1 and F2 generations were checked. In this experiment, 1 and 10 mg/L BPA significantly decreased the fecundity of F1 females. Moreover, 0.1 and 1 mg/L BPA substantially reduced egg production in the F2 generation. These results suggested that maternal exposure to BPA at enviromentally relavant concnetrations reduces reproductive function in Drosophila melanogaster females and that this effect is transgenerational.

Associations Between Thyroid Hormone Levels and Urinary Concentrations of Bisphenol A, F, and S in 6-Year-old Children in Korea

  • Jang, Yoonyoung;Choi, Yoon-Jung;Lim, Youn-Hee;Lee, Kyung-Shin;Kim, Bung-Nyun;Shin, Choong Ho;Lee, Young Ah;Kim, Johanna Inhyang;Hong, Yun-Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • Objectives: Bisphenol A (BPA) is used in the electrical, mechanical, medical, and food industries. Previous studies have suggested that BPA is an endocrine disruptor. Regulation of BPA has led to increased use of bisphenol F (BPF) and bisphenol S (BPS). However, few studies have investigated the associations of BPF and BPS with thyroid dysfunction in children. Our study investigated the associations of prenatal BPA and early childhood BPA, BPF, and BPS exposure with thyroid function in 6-year-old children. Methods: Prenatal BPA concentrations were measured during the second trimester of pregnancy in an established prospective birth cohort. We measured urinary BPA, BPF, and BPS concentrations and thyroid hormone levels (thyroid-stimulating hormone, total T3, and free T4) in 6-year-old children (n=574). We examined the associations between urinary bisphenol concentrations and percentage change of thyroid hormone concentrations using multivariate linear regression. We also compared thyroid hormone levels by dividing the cohort according to BPA, BPF, and BPS concentrations. Results: The associations between prenatal BPA and total T3 levels were statistically significant in all models, except for girls when using a crude model. The associations between urinary BPA and BPS concentrations and levels of all thyroid hormones were not statistically significant. However, we observed that lower free T4 levels (-1.94%; 95% confidence interval, -3.82 to -0.03) were associated with higher urinary BPF concentrations in girls only. Conclusions: Our findings identified significant associations between prenatal BPA exposure and total T3 levels in all children and between BPF exposure and free T4 levels in girls only.

Cross-generational Effect of Bisphenol A on the Harpacticoid Copepod Tigriopus west: A Full Life Cycle Toxicity Test

  • Bang, Hyun Woo
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.456-462
    • /
    • 2018
  • The purpose of this study was to assess cross-generational effects of bisphenol A exposure in benthic copepods, Tigriopus west. Nauplii (<24 hours old) were exposed to graded concentrations of bisphenol A, and toxicity end-points such as survival, development, sex ratio, and fecundity were measured. $F_1$ generations were grown under innoxious conditions, and similarly assessed. Significant differences were observed in development of nauplii and copepodites, between exposed and non-exposed copepods; however, there were no differences in survival of nauplii or copepodites, sex ratio, or brooding rate in parental generation. In contrast, in the $F_1$ generation, there were significant differences between the control group and exposed group in survival and development of nauplii. Length, width, and biomass of parental and $F_1$ generations were reduced in the exposed group compared to the control group. In addition, some deformities, such as swelling of the prosome, abnormally shaped egg sac, and dwarfism were observed after exposure to bisphenol A. So, our study demonstrates that a cross-generation toxicity test and monitoring of morphological deformities in harpacticoid copepods, can be useful for development of potential bioindicators for environmental monitoring, and assessment of chemical impact.

Self-Healing Investigation of Bisphenol F-Type Epoxy-Modified Mortars with Expansive Admixtures Under Outdoor Exposure Conditions (환경조건에 따른 팽창성 혼화재 및 비스페놀 F형 에폭시수지 병용 모르타르의 자기치유 검토)

  • Park, Seung-Min;Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.22-23
    • /
    • 2017
  • The purpose of this study is to ascertain self-healing function on microcracks in bisphenol F-type epoxy-modified mortars using expansive admixtures. The specimens are prepared with various polymer-binder ratios of 0, 5, 10, 20%, expansive admixture contents of 0% and 10%, a sodium carbonate content of 0.25%, and subjected to exposure conditions of CR1, CR2, CR3 and CR4. The specimens are tested for self-healing effect, porosity and FE-SEM analysis. As a result, self-healing effects of bisphenol F-type EPMMs with expansive admixtures are visible in all of the outdoor exposure conditions. In particular, exposure conditions of CR3 and CR4 are most noticeable. And the porosity of EPMMs is reduced with an increase in the polymer-binder ratio, and is considerably smaller than that of unmodified mortar.

  • PDF

The Cure and Rheological Behavior of Diglycidyl Ether of Bisphenol F /Nadic Methyl Anhydride Resin System for Liquid Encapsulant (액상봉지재용 Diglycidyl Ether of Bisphenol F/Nadic Methyl Anhydride 수치 시스템의 경화 및 유변학적 거동)

  • 김윤진;김창제;윤호규
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.152-157
    • /
    • 2002
  • The cure and rheological behavior of Diglycidyl ether of bisphenol F, catalyzed by four kinds of imidazoles and a Nadic methyl anhydride curing agent were studied using a differential scanning calorimeter (DSC) and rheometer. The isothermal traces were employed to analyze cure reaction. The DGEBF/anhydride conversion profiles showed autocatalyzed reaction characterized by maximum conversion rate at 20~40 % of the reaction. The rate constants obtained from isothermal test showed temperature dependance, but reaction order did not. The order of reaction (m+n) was calculated to be close to 3. The measurements of viscosity and relation time in the presence of inorganic fillers were carried out at different isothermal curing temperatures. The viscosity and gelation time increased with filler content at the same isothermal temperature.

  • PDF

Current State of Use and the Risks of Bisphenols: A Minireview (비스페놀류의 사용 현황과 위해성: 소고)

  • Song, Chang Yeob;Kim, Woong;Gye, Myung Chan
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.581-594
    • /
    • 2017
  • Bisphenol A(BPA), known as a typical endocrine disruptor, has been used commercially and widely for plastics and epoxy resins. BPA-based plastic is used extensively for the production of water bottles, food containers, CDs, DVDs, and panels that can be applied in construction. Epoxy resins containing BPA are used for coatings on the insides of water pipes, food cans, and thermal papers that are used in sales receipts. As its estrogenic effects and other adverse health effects have published, BPA has been regulated in many countries, and there have been efforts made to replace BPA. Other bisphenols substitutes such as bisphenol S(BPS) and bisphenol F(BPF) have been used. Currently, BPS- and BPF-based products labeled BPA-free products have been widely consumed. Because of structural similarities with BPA, however, these alternatives also show endocrine disruption effects like BPA, and many studies on adverse health effects of these alternatives are being reported. In this review, we describe the adverse health effects of bisphenols and the current status of regulation.

Effects of Bisphenol A on Dams during Lactation Period in Rats (흰쥐 수유기에 경구투여된 Bisphenol A의 영향)

  • 김판기;유재홍
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.208-215
    • /
    • 2003
  • Bisphenol A (4,4'-isopropylidenediphenol, $C^{15}H_{16}O_{2}$) is the monomer used in the manufacture of polycarbonate. Polycarbonate, in turn, is used in a wide array of plastic products, with new applications continuously being developed. Also it has been used to produce epoxy resins and polycarbonate plastics for food container. This study was carried out to investigate the effects of bisphenol A on lactation period to dams and F1. Sprague-Dawley females were mated with on 2 : 1 ratio basis. Various doses of bisphenol A (0, 2, 20, 200, and 2,000 ${\mu}g kg^{-1}$) were daily administered to females for 21 days after parturition. Dams and offsprings were sacrificed at the time of weaning. The results were as fellows, 2000 ${\mu}g \; kg^{-1}$ / of bisphenol A decreased the dams' body weight at post-partum 18 days and also 200 and 2,000 ${\mu}g \;kg^{-1}$ of bisphenol A decreased the body weight of neonates at the days of post-partum 21 days. Bisphenol A increased the relative weights of liver and spleen in male offsprings, depending on the doses. But female offsprings showed high relative organ weights of ovaries, and low relative organ weights of uterine in a some dose-response manners. High dose of bisphenol A induced low viability of neonates exposed during lactation period. The dams treated with bisphenol A showed prematured estrous stage. Bisphenol A was recovered about 21.2% average in serum of dams, and also in offsprings'. The results indicate that the bisphenol A induces estrous cycle during lactation period in dams, also reaches to the offspring through breast milk. Thus bisphenol A exopsed to dams and neonates via lactation induces some estrogenic and tonic effects.

Effects of Bisphenol A on Dams during Lactation Period in Rats

  • Kim, Pan-Gyi;Leu, Jae-Hong;Kang, Hee-Joo;Kim, Jeong-Hyun
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.171-173
    • /
    • 2003
  • Bisphenol A (4,4'-isopropylidenediphenol, C$\_$15/H$\_$16/O$_2$) is the monomer used in the manufacture of polycarbonate. Polycarbonate, in turn, is used in a wide array of plastic products, with new applications continuously being developed. Also it has been used to produce epoxy resins and polycarbonate plastics for food container. This study was carried out to investigate the effects of bisphenol A on lactation period to dams and F1, Sprague-Dawley females were mated with on 2:1 ratio basis. Various doses of bisphenol A (0, 2, 20, 200, and 2,000 $\mu\textrm{g}$/kg) were daily administered to females for 21 days after parturition. Dams and offsprings were sacrificed at the time of weaning. The results were as follows, 2000 $\mu\textrm{g}$/kg of bisphenol A decreased the dams' body weight at post-partum 18 days and also 200 and 2000 $\mu\textrm{g}$/kg of bisphenol A decreased the body weight of neonates at the days of post-partum 21 days. Bisphenol A increased the relative weights of liver and spleen in male offsprings, depending on the doses. But female offsprings showed high relative organ weights of ovaries, and low relative organ weights of uterine in a some dose-response manners. High dose of bisphenol A induced low viability of neonates exposed during lactation period. The dams treated with bisphenol A showed prematured estrous stage. Bisphenol A was recovered about 21.2% average in serum of dams, and also in offsprings'. The results indicate that the bisphenol A induces estrous cycle during lactation period in dams, also reaches to the of offspring through breast milk. Thus bisphenol A exopsed to dams and neonates via lactation induces some estrogenic and toxic effects.

  • PDF

Endocrine Disruption Potentials of Bisphenol A Alternatives - Are Bisphenol A Alternatives Safe from Endocrine Disruption?

  • Ji, Kyunghee;Choi, Kyungho
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • Objectives: Although a great body of knowledge is available on the toxicity of bisphenol A (BPA), little is known about that of BPA alternatives, such as bisphenol analogues (BPs) or $Tritan^{TM}$ copolyesters. This review provides a summary of the available information on the toxicity of BPs and three components of $Tritan^{TM}$, with a special focus on endocrine disruption. Methods: We collected from the literature a battery of in vitro and in vivo assay data developed to assess endocrine disruption of four BPs (bisphenol AF, B, F, and S) and three major components of $Tritan^{TM}$ ((di-methylterephthalate (DMT), 1,4-cyclohexanedimethanol (CHDM), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD)). Results: Several alternative compounds were identified as possessing comparable or even greater endocrinedisrupting effects than BPA in in vitro and in vivo studies. Conclusions: Potential endocrine disruption of BPA alternatives requires further studies on health consequences in experimental animals and in humans following longer term exposure.