• Title/Summary/Keyword: bipolar transistor

Search Result 332, Processing Time 0.017 seconds

A 45GHz $f_{T}\;and\;50GHz\;f_{max}$ SiGe BiCMOS Technology Development for Wireless Communication ICs (무선통신소자제작을 위한 45GHz $f_{T}$ 및 50GHZz $f_{max}$ SiGe BiCMOS 개발)

  • Hwang Seok-Hee;Cho Dae-Hyung;Park Kang-Wook;Yi Sang-Don;Kim Nam-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.1-8
    • /
    • 2005
  • A $0.35\mu$m SiGe BiCMOS fabrication process has been timely developed, which is aiming at wireless RF ICs development and fast growing SiGe RF market. With non-selective SiGe epilayer, SiGe HBTs in this process used trapezoidal Ge base profile for the enhanced AC performance via Ge induced bandgap niuoin. The characteristics of hFE 100, $f_{T}\;45GHz,\;F_{max}\;50GHz,\;NF_{min}\;0.8dB$ have been obtained by optimizing not only SiGe base profile but also RTA condition after emitter polysilicon deposition, which enables the SiGe technology competition against the worldwide cutting edge SiGe BiCMOS technology. In addition, the process incorporates the CMOS logic, which is fully compatible with $0.35\mu$m pure logic technology. High Q passive elements are also provided for high precision analog circuit designs, and their quality factors of W(1pF) and inductor(2nH) are 80, 12.5, respectively.

Numerical analysis of heat dissipation performance of heat sink for IGBT module depending on serpentine channel shape (수치 해석을 통한 절연 게이트 양극성 트랜지스터 모듈의 히트 싱크 유로 형상에 따른 방열 성능 분석)

  • Son, Jonghyun;Park, Sungkeun;Kim, Young-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.415-421
    • /
    • 2021
  • This study analyzed the effect on the cooling performance of the channel shape of a heat sink for an insulated gate bipolar transistor (IGBT). A serpentine channel was used for this analysis, and the parameter for the analysis was the number of curves. The analysis was conducted using computational fluid dynamics with the commercial software ANSYS fluent. One curve in the channel improved the heat dissipation performance of the heat sink by up to 8% compared to a straight-channel heat sink. However, two curves in the channel could not improve the heat discharge performance further. Instead, the two curves caused a higher pressure drop, which induces parasitic loss for the pumping of coolant. The pressure drop of the two-curve channel case was 2.48-2.55 times larger than that of a one-curve channel. This higher pressure drop decreased the heat discharge efficiency of the heat sink with two curves. The discharge heat per unit pressure drop was calculated, and the result of the straight heat sink was highest among the analyzed cases. This means that the heat discharge efficiency of the straight heat sink is the highest.