• Title/Summary/Keyword: bipolar plates

Search Result 111, Processing Time 0.029 seconds

Effect of Surface Treatments of Stainless Steels on Oxidation Behavior Under Operating Condition of IT SOFC Interconnect (IT SOFC 인터커넥터 구동 조건에서의 스테인레스 소재의 산화거동에 미치는 표면전처리의 영향)

  • Moon, Min-Seok;Woo, Kee-Do;Kim, Sang-Hyuk;Yoo, Myung-Han
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • Solid oxide fuel cells (SOFCs) have many attractive features for widespread applications in generation systems. Recently, stainless steels have attractive materials for metallic bipolar plate because metallic bipolar plates have many benefits compared to others such as graphite and composite bipolar plates. SOFC operates on high temperature of about $800{\sim}1000^{\circ}C$ than other fuel cell systems. Thus, many studies have attempted to reduced the operation temperature of SOFC to about $600{\sim}800^{\circ}C$, which is the intermediate temperature (IT) of SOFC. Low cost and high-temperature corrosion resistance are very important for the practical applications of SOFC in various industries. In this study, two specimens, 304 and 430 stainless steels with and without different pre-surface treatments on the surface were investigated. And, specimens were exposed at high temperature in the box furnace under oxidation atmosphere of $800^{\circ}C$. Oxidation behavior have been investigated with the materials exposed at different times (100 hrs and 400 hrs) by SEM, EDS and XRD. By increasing exposure time, the amount of metal oxide increased in the order like; STS304 < STS430 and As-received < As-polished < Sand-blast specimens.

Comparison Study of Polymer and Ti Sol-Gel Carbon Coating on Ti for PEMFC Bipolar Plates (고분자전해질 연료전지용 Ti 분리판을 위한 고분자와 Ti Sol-Gel 탄소코팅의 비교 연구)

  • Won-Seog Yang;Jae-Ho Lee;Hee-Suk Roh;Ju-Hyun Yoo;Chul-Min Park;Su-Yeon Lee;Sung-Mo Moon
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.447-456
    • /
    • 2023
  • In this work, we performed a comparative study examining two coatings on Ti Gr.1 for use in fuel cell bipolar plates. The coatings consisted of carbon black as the conductor along with acrylic polymer and Ti Sol-Gel binder as the binder. Ti Sol-Gel that had precipitated as TiO2 in areas impregnated between carbon black gaps, thereby acting as a binder for carbon black and serving as a polymer coating. Neither of the coatings peeled off during the 90° bend test to check formability. The contact resistance of the TiO2 coating was found to be lower than that of the polymer binder coating. Moreover, due to coating shrinkage (denser) that occurred during the heat treatment process, the TiO2 binder coating showed almost the same level of corrosion resistance, as measured by potentiostatic and EIS tests, despite being thinner than the polymer coating. However, both the polymer binder coating and the TiO2 binder coating had many pores and irregularities internally (around 10 ~ 100 nm) and on the surface (0.1 ~ 2 ㎛). We considered that these pores and irregularities contributed to the lower corrosion resistance.

Compressive and Bending Behaviors of the Shielded Slot Plate Considering Forming Effect for Fuel Cell Application (성형 이력을 고려한 용융탄산염 연료전지용 쉴디드 슬롯 플레이트의 압축 및 굽힘 거동 분석)

  • Lee, C.W.;Yang, D.Y.;Kang, D.W.;Chang, I.G.;Lee, T.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.341-347
    • /
    • 2012
  • The metallic bipolar plates of the molten carbonate fuel cell(MCFC) are composed of shielded slot plates and a center-plate. The shielded slot plates support the center-plate and the membrane electrode assembly. Compressive forces are applied to the shielded slot plate in order to increase the contact area between shielded slot plates and the membrane electrode assembly (MEA). In the design of the shielded slot plate, it is necessary to predict the mechanical behavior of the shielded slot plate. The shielded slot plates are manufactured by a three-stage forming process consisting of slitting, preforming and the final forming process. The mechanical behavior of the shielded slot plate is largely affected by the forming process. In this study, the simulation of the three-stage forming process was used to predict the mechanical behavior of the shielded slot plate. The present simulation approach showed good agreements with the experimental results.

Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite

  • Choi, Jong-Min;Kim, Tae-Jin;Hyun, Min-Soo;Peck, Dong-Hyun;Kim, Sang-Kyung;Lee, Byung-Rok;Park, Jong-Soo;Jung, Doo-Hwan
    • Carbon letters
    • /
    • v.6 no.3
    • /
    • pp.181-187
    • /
    • 2005
  • Bipolar plates require some specific properties such as electrical conductivity, mechanical strength, chemical stability, and low permeability for the fuel cell application. This study investigated the effects of carbon nanotube (CNT) contents and process conditions of hot press molding on the electrical and physical properties using CNT 3~7 wt% added graphite nano-composites in the curing temperatures range of 140~$200^{\circ}C$ and pressure of 200~300 kg/$cm^2$. Bulk density, hardness and flexural strength increased with increasing CNT contents, curing pressure and temperature. With the 7 wt% CNT added noncomposite, the electrical resistance improved by 30% and the flexural strength increased by 25% as compared to that without CNT at the temperature of $160^{\circ}C$ and pressure of 300 kg/$cm^2$. These properties were close to the DOE reference criteria as bulk resistance of 13 $m{\Omega}cm$ and tensile strength of 515 kg/$cm^2$.

  • PDF

Development of Lightweight DMFC System for Charging Secondary Battery in Military Operational Environment (군 운용환경에서 이차전지 충전을 위한 경량화 DMFC 시스템 개발)

  • LEE, SUWON;GWAK, GEONHUI;RO, JUNGHO;CHO, YOUNGRAE;KIM, DOYOUN;JU, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.481-491
    • /
    • 2017
  • In this study, we developed 300 W lightweight DMFC system for charging secondary battery in small unit military operation. In order to reduce the volumetric shape and weight of the system considering the environment of the individual soldier's, the arranging of system components has been optimized. A metal bipolar plates made of STS-470FC have been implemented to the DMFC stack to meet the weight demand of the system. As a result of the performance test of the stack, the target value was satisfied by outputting 561 W exceeding 24% of the stack output 450 W required to output 300 W required for the entire system. Moreover, 2,655 hours exceeding 1,000 hours also has been satisfied. To ensure good robustness of the metallic bipolar plate based DMFC stack, finite element method based simulations are conducted using a commercial ANSYS Fluent software.

Electrochemical Characteristics of MMO(Ti/Ru)-Coated Titanium in a Cathode Environment of Polymer Electrolyte Membrane Fuel Cell (MMO(Ti/Ru) 코팅된 타이타늄의 고분자 전해질 연료전지 양극환경에서의 전기화학적 거동)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.340-347
    • /
    • 2022
  • In this research, mixed metal oxide (TiO2, RuO2) coating was applied to grade 1 titanium as a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Electrochemical experiments were carried out in an aqueous solution of pH 3 (H2SO4 + 0.1 ppm HF, 80 ℃) determined by DoE. The air was bubbled to simulate a cathode environment. Potentiodynamic polarization test revealed that corrosion current densities of the titanium substrate and MMO-coated specimen were 0.180 µA/cm2 and 4.381 µA/cm2, respectively. There was no active peak. After potentiostatic experiment, current densities of the titanium substrate and the MMO-coated specimen were 0.19 µA/cm2 and 1.05 µA/cm2, respectively. As a result of observing the surface before and after the potentiostatic experiment, cracked dried clay structures were observed without corrosion damage. Both the titanium substrate and the MMO-coated specimen could not satisfy the interfacial contact resistance suggested by the DoE. Thus, further research is needed before they could be applied as bipolar plates.

Analysis of Corrosion Characteristics for TiN- and Ti/TiN-coated Stainless Steel Bipolar Plate in PEMFC (고분자전해질 연료전지에서 TiN과 Ti/TiN이 코팅된 스텐레스 강 분리판의 부식 특성)

  • Han, Choonsoo;Chae, Gil-Byung;Lee, Chang-Rae;Choi, Dae-Kyu;Shim, Joongpyo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.118-127
    • /
    • 2012
  • TiN or Ti/TiN was coated on stainless steel as bipolar plate in polymer electrolyte membrane fuel cells (PEMFCs) to improve their corrosion resistance and electric conductivity, and their properties were examined under fuel cell operating condition. After 200 hours operation, the behaviors for the corrosion, crack and dissolution of coating layer were investigated by various techniques. The corrosion and exfoliation of coating layer were considerably generated except for SUS316L-Ti/TiN after fuel cell operation even if the electric conductivity and corrosion resistance of coated stainless steel bipolar plates were improved. The adoption of Ti layer between TiN layer and the surface of stainless steel enhanced the adhesion of TiN layer and decreased the possibility of corrosion by the increase of coating layer.

Design of HALL effect integrated circuit with reduced wolgate offset in silicon bipolar technology (옵셋전압을 저감시킨 실리콘 바이폴라 홀 IC 설계)

  • 김정언;홍창희
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.138-145
    • /
    • 1995
  • The offset voltage in silicon Hall plates is mainly caused by stress and strain in package, and by alignment in process. The offset voltage is appeared random for condition change with time in the factory, is non-linearly changed with temperature. In this paper proposed new method of design of Hall IC, and methematicaly proved relation layout of chip of 90$^{\circ}$-shift-current Hall plate pair is matched with "Differentail to single ended Conversion amplifier." In the experiment, the offset voltage is reduced about 1/100 time than the original offset voltage.

  • PDF

Synthesis and Analysis of Optical Transfer Function of the Modified Triangular Interferometer by Two - pupil Synthesis Method

  • Kim, Soo-Gil
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.182-187
    • /
    • 2004
  • We synthesized and analyzed the optical transfer function(OTF) of the modified triangular interferometer (MTI) using two-pupil synthesis method. Also, we presented the optimal MTI, which can obtain any bipolar function by combining two wave plates and a linear polarizer. By using the proposed MTI, we can obtain the complex hologram without bias and conjugate image.

Development of Surface Coating Technology fey Metallic Bipolar Plate in PEMFC : I. Study on Surface and Corrosion Properties (PEMFCB금속분리판 코팅 기술 개발 : I. 표면 및 부식 특성 평가)

  • Chung, Kyeong-Woo;Kim, Se-Yung;Yang, Yoo-Chang;Ahn, Seung-Gyun;Jeon, Yoo-Taek;Na, Sang-Mook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.348-351
    • /
    • 2006
  • Bipolar plate, which forms about 50% of the stack cost, is an important core part with polymer electrolyte membrane in PEMFC. Bipolar plates have been commonly fabricated from graphite meterial having high electrical conductivity and corrosion resistance. Lately, many researchers have concentrated their efforts on the development of metallic bipolar plate and stainless steel has been considered as a potential material for metallic bipolar plate because of its high strength, chemical stability, low gas permeability and applicability to mass production. However, it has been reported that its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions and an increase in contact resistance by the growth of passive film therefore, its corrosion resistance as well as contact resistance must be improved for bipolar plate application. In this work, several types of coating were applied to 316L and their electrical conductivity and corrosion resistance were evaluated In the simulated PEMFC environment. Application of coating gave rise to low interfacial contact resistances below $19m{\Omega}cm^2$ under the compress force of $150N/cm^2$. It also made the corrosion potential to shift in the posit ive direct ion by 0.3V or above and decreased the corrosion current from ca. $9{\mu}A/cm^2$ to ca. $0.5{\mu}A/cm^2$ in the mixed solution of $0.1N\;N_2SO_4$ and 2ppm HF A coat ing layer under potentiostatic control of 0.6V and $0.75V_{SCE}$ for 500 hours or longer showed some instabilities, however, no significant change in coat Ing layer were observed from Impedance data. In addition, the corrosion current maintained less than $1{\mu}A/cm^2$ for most of time for potentiostatic tests. It indicates that high electrical conductivity and corrosion resistance can be obtained by application of coatings in the present work.

  • PDF