• Title/Summary/Keyword: bipolar membrane

Search Result 135, Processing Time 0.029 seconds

Computational Justification of Current Distribution Measurement Technique Via Segmenting Bipolar Plate in Fuel Cells (분리판 분할을 통만 연료전지의 전류분포 측정법에 대한 수치적 검증)

  • Choi, Yong-Jun;Lee, Gi-Yong;Kang, Kyung-Mun;Kim, Whan-Gi;Ju, Hyun-Chul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • Current distribution measurement technique based on a segmented bipolar plate (BP) has been widely adopted to visualize the distribution of current density in a polymer electrolyte membrane. However, a concern is raised how closely the current density of a segmented BP can approach that of a corresponding non-segmented membrane. Therefore, in this paper, the accuracy of the measurement technique is numerically evaluated by applying a three-dimensional, two-phase fuel cell model to a $100\;cm^2$ area fuel cell geometry in which segmented BPs and non-segmented membrane are combined together. The simulation results reveal that the errors between the current densities of the segmented BPs and non-segmented membrane indeed exist, predicting the maximum relative error of 33% near the U-turn regions of the flow-field. The numerical study further illustrates that the erroneous result originates from the BPs segmented non-symmetrically based on the flow channels that allows some currents bypassing flow channels to flow into its neighboring segment. Finally, this paper suggests the optimal way for bipolar plate segmentation that can minimize the deviation of current measured in a segmented BP from that of a corresponding membrane region.

A Study on Performance of Polymer Electrolyte Membrane Fuel Cell Using Metal Foam (Metal foam을 사용한 고분자 전해질 연료전지 성능 연구)

  • KIM, MYO-EUN;KIM, CHANG-SOO;SOHN, YOUNG-JUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.554-559
    • /
    • 2015
  • Single cell of PEMFC (polymer electrolyte membrane fuel cell) is composed of bipolar plates, gasket, GDL and the MEA. Bipolar plate's function is the collecting electricity, helping oxygen/hydrogen gas diffuse evenly and draining the water and heat. In this work, we have conducted experiments to low contact resistance and improve the performance of a $25cm^2$ single cell by using metal forms. We have following experimental cases: 1) Conventional graphite serpentine channel bipolar plate; 2) Channel-less bipolar plate with nickel(Ni) based metal foam which coated by various materials. We focused the difference in contact resistance and performance of the single cell with metal foam depending on various coating materials. The experimental results show the similar performance of single cells between with serpentine channel bipolar plates and with channel-less bipolar plate using metal foams. In addition, single cell with metal foam shows potential to higher performance than conventional channel.

Multi-film coated bipolar plates for PEMFC (Proton Exchange Membrane Fuel Cell) application (다층박막 코팅된 PEMFC (Proton Exchange Membrane Fuel Cell)용 바이폴라 플레이트)

  • Jeon, Gwang-Yeon;Yun, Young-Hoon;Cha, In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.646-648
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

  • PDF

Development of Carbon Composite Bipolar Plates for PEMFC (양성자 교환막 연료전지용 탄소 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.222-228
    • /
    • 2019
  • The proton exchange membrane fuel cell (PEMFC) system has many potential uses as an environmentally friendly power source. Carbon fiber composite bipolar plates are highly corrosion resistant and have high specific strength and stiffness in acidic environments, however, the relatively low electrical conductivity is a major issue which reduces the efficiency of PEMFC. In this study, electrically conductive particles (graphite powder and carbon black) are applied to carbon-epoxy composite prepregs to reduce the electrical resistance of the bipolar plates. The electrical resistance and mechanical properties are measured using conventional test methods, and a unit cell performance evaluation of developed carbon composite bipolar plates is performed to compare with the conventional bipolar plate.

Effects of Nitrogen Ion Implantation on the Surface Properties of 316L Stainless Steel as Bipolar Plate for PEMFC (고분자전해질 연료전지 분리판용 316L 스테인리스강의 표면특성에 미치는 질소 이온주입 효과)

  • Kim, Min Uk;Kim, Do-Hyang;Han, Seung Hee;Kim, Yu-Chan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.722-727
    • /
    • 2009
  • The bipolar plates are not only the major part of the polymer electrolyte membrane fuel cell (PEMFC) stack in weight and volume, but also a significant contributor to the stack costs. Stainless steels are considered to be good candidates for bipolar plate materials of the PEMFC due to their low cost, high strength and easy machining, as well as corrosion resistance. In this paper, 316L stainless steel with and without nitrogen ion implantation were tested in simulated PEMFC environments for application as bipolar plates. The results showed that the nitride formed by nitrogen ion implantation contributed the decrease of the interfacial contact resistance without degradation of corrosion property. The combination of excellent properties indicated that nitrogen ion implanted stainless steel could be potential candidate materials as bipolar plates in PEMFC. Current efforts have focused on optimizing the condition of ion implantation.

A Study on a Design of Bipolar Plate for PEMFC System (PEMFC 시스템용 바이폴라 플레이트의 디자인에 관한 연구)

  • Yoon, Hyung-Sang;Cha, In-Su;Lee, Jeong-Il;Yoon, Jeong-Phil
    • New & Renewable Energy
    • /
    • v.4 no.1
    • /
    • pp.5-10
    • /
    • 2008
  • Hydrogen fuel cell is clean and efficient technology along with high energy densities. While there are many different types of fuel cells, the proton exchange membrane fuel cell stands out as one of the most promising for transportation and small stationary applications. This paper focuses on design of bipolar plate for proton exchange membrane fuel cell. The bipolar plate model is realistically and accurately simulated velocity distribution, current density distribution and its effect on the PEMFC system using CFD tool FLUENT.

  • PDF

Development of GDL-carbon Composite Bipolar Plate Assemblies for PEMFC (PEM 연료전지용 가스확산층-탄소 복합재료 분리판 조합체 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.406-411
    • /
    • 2021
  • PEM (proton exchange membrane) fuel cells generate only water as a by-product, and thus are in the spotlight as an eco-friendly energy source. Among the various components composing the stack of the fuel cell, research on the bipolar plate that determines the efficiency of the fuel cell is being actively conducted. The composite bipolar plate has high strength, rigidity and corrosion resistance, but has the disadvantage of having a relatively low electrical conductivity. In this study, to overcome these shortcomings, a gas diffusion layer (GDL)-composite bipolar plate assembly was developed and its performance was experimentally verified. The graphite foil coating method developed in the previous study was applied to reduce the contact resistance between the bipolar plate and the GDL. In addition, in order to improve electron path in the stack and minimize the contact resistance between the GDL and the bipolar plate, a GDL-bipolar plate assembly was fabricated using a thin metal foil. As a result of the experiment, it was confirmed that the developed GDL-bipolar plate assembly had 98% lower electrical resistance compared to the conventional composite bipolar plate.

Characterization of Carbon Composite Bipolar Plates far Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지용 탄소 복합체 Bipolar Plates의 기체 투과 특성 연구)

  • Hong Seong Uk;Kim Hyun Seon;Choi Won Seok;Kim Jeong Heon
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.141-146
    • /
    • 2005
  • In this study, carbon composites were prepared using carbon graphite, thermoset resin, and carbon black. Oxygen permeability was measured using the continuous flow gas permeation analyzer as a function of composition and processing conditions. The experimental results showed that the oxygen permeability increased as the carbon black content increased, whereas the oxygen permeability decreased as the pressing time increased. The oxygen permeability was not affected by the processing pressure.