• Title/Summary/Keyword: biotope types

Search Result 95, Processing Time 0.03 seconds

A Study on the Utilization of Biotope Map in Urban Planning - Focusing on the land use designation and planned urbanized area - (도시계획 수립에 있어 도시생태현황지도 활용방안 연구 - 용도지역과 시가화예정용지를 중심으로 -)

  • Kwon, Jeon-O;Park, Seok-Cheol;Baek, Seung-A
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.31-46
    • /
    • 2021
  • In South Korea, there is a growing domestic need for a biotope map which contains ecological and environmental geographic information of a city. After the production of a Urban Ecological Maps(biotope map) by the Seoul metropolitan government in 2000, Natural Environment Conservation Act was revised in 2017 to make it mandatory for a local government to draw up its own urban ecological map. The aim of the present study was to find out ways to utilize an urban ecological map as a mean of communication between natural environment planning and urban planning sectors in a preliminary stage before introducing a big framework of 'environmental and ecological planning.' The northern area of Incheon metropolitan city was selected as the target area for this study. The major research content includes a comparative analysis of special-purpose zones, urban planning zones, restricted development zones, and conservation forests with focus on biotope types and Grades 1 of 'Biotope Type Assessment.' Farmland biotopes and forest biotopes within an area designated as an urban zone (residential, commercial and industrial zones) need to be redesignated as a zone which can conserve them. Especially considering a high possibility of damage to a large scale of natural green areas, these areas need to be readjusted immediately. If the entire area designated as an urban planning zone is to be developed, it is likely to cause serious damage to natural biotopes in the area (56.2%), including farmland biotope (30.4%), forest biotope (15.0%) and grassland biotope (10.8%), and thus, readjustment is needed. In case of a conservation forest, as it can possibly be damaged by the designation of special-purpose zones, it is necessary to match the designation of conservation forests or a special-purpose zones with their biotope types. In conclusion, we present a variety of thematic maps for utilization of an urban ecological map and propose a phase-specific environmental and ecological plan. Phase 1 is the establishment of a urban plan in consideration of ecological status; Phase 2 is the independent establishment of an environmental and ecological plan by an environment department; Phase 3 is an integrated management of ecological planning system and urban planning system.

Biotope-Type Classification Considering Urban Ecosystem Structure (도시생태계 구조를 고려한 비오톱 유형 구분)

  • Kim Jeong-Ho;Han Bong-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.2 s.115
    • /
    • pp.1-17
    • /
    • 2006
  • The purpose of this study was to analyze biotope types of urban land-use patterns. Forest areas were considered according to vegetation type and potential for succession. Urban ecosystem structure was analyzed according to land use, land coverage, vegetation structure (actual vegetation, diameter at breast height, layer structure, and revetment). As a results of the classification, the biotopes were divided into 71 types according to the urban ecosystem structure. In the case of the Hanam province, the biotopes were divided into 51 types: 26 forest types; 5 swampy and grass land types; 3 farm land types; 3 types of planted land, and 8 types of urbanization.

A Study on the Biotope Planning of Dong-gang River Watershed in Ecological and Landscape Conservation Area (동강 생태·경관보전지역 내 비오톱(Biotope) 조성 계획)

  • Park, Eun Kyoung;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.4
    • /
    • pp.115-124
    • /
    • 2013
  • This study was conducted to make a biotop planning and construct 3 types of biotop by each site conditions. Three sites of different types in ecological and scenery conservation area of the Dong-gang river were selected by expert brain-storming process and constructed terrestrial biotops and aquatic biotops. Targets of 3 sites were set up such as constructing a habitat for Kaloula borealis and an ecological education place, building a terrestrial biotopes and monitoring the natural vegetation succession, and constructing a habitat for Luciola unmunsana Doi. The study results can be applied hereafter to ecological restoration projects, after construction of habitat, the priority should be prepare measures of monitoring and maintenance, hereafter continuous study on ecological restoration should be performed actively through construction of biotope and wild animals and plants habitat.

Analysis of Biotope Area Ratio in the Environmental Impact Statements (환경영향평가서에 나타난 개발사업의 생태면적률 검토 연구)

  • Lee, Sang-Don
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.394-401
    • /
    • 2018
  • Tendency in ratio of biotope area of environmental impact assessment (EIA) according to population, location, project type, and total project area was analyzed by type of the projects. According to EIA, biotope area ratio is the ratio of the weighted biotope areas and total project area. biotope area is important to resident's health and quality of their life. Ministry of Environment recommends to meet the biotope area ratio standard presented by each project type. The analysis is based on 4 types of project, urban development, industrial comlpex deveopment, tourism development, and waste and sewerage treatment facility, and 55 data extracted from them. It is needed that new standard that the population is reflected, adjustment that region and frequency are considered, and regulation strengthening according to achievement of 'the minimum achievable goals' to improve biotope area policy. The research includes more data and improvements of specific system are needed as a further research.

Properties of Wildbirds Habitat according to Biotope Types at Seom River and Wonju Stream (원주시 섬강, 원주천의 비오톱유형별 야생조류 서식특성 연구)

  • Noh, Tai-Hwan;Pi, Jae-Hwang;Choi, Jin-Woo;Lee, Kyong-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.6
    • /
    • pp.676-689
    • /
    • 2013
  • This study is to understand the current situation of Wonju Stream, which flows through Wonju, Kangwon-do, and Seom River, the national river located outside of Wonju, by investigating all river areas using biotope type. Also, this research looked into the relationship between biotope and appearance of wild birds by investigating the location of their appearance. Biotope groups are 'scale', 'shape', and 'landscape'. And, biotope types are 'moisture', 'physical environment', and 'existence of vegetation'. Biotope subtypes are 'river area', 'physical environment', 'vegetation type', and 'usage of land'. Seom River is classified as 21 different sections, and Wonju Stream is classified as 19 different sections. Wild birds are investigated on breeding season, which was January and May of 2008. By marking each bird's location of appearance, it figured out properties of biotope according to the location of bird's appearance. 31 species, 795 birds in spring were founded, and 49 species, 4,348 birds are founded in winter at Seom River area. Also, 34 species, 427 birds in spring, and 33 species, 3,442 birds are founded in winter at Wonju Stream area. In winter, 26 species, 547 birds, and in spring, 12 species, 72 birds at natural river with estuaries in confluence of Seom River area are founded. Also, 34 species, 1412 birds in winter, and 24 species, 341 birds in spring are founded at natural river with estuaries and wetland plants. This means that because agricultural rivers have wide river width, slow flow speed, and many different types of biotope, these rivers can be good habitats for wild birds. The precise investigations and classifications of biotope, which especially are hard for linear rivers, were done to understand the whole and current situation of rivers. Furthermore, the data that shows the locations of wild birds can basically be used for a recovery of biological habitats, a constructing of ecological streams, a river-maintenance, and an enhancement of biodiversity of Wonju. Also, because the types of biotope are altered by rain, a continuous monitoring for maintaining ecosystem of rivers are highly needed.

Analysis of the Regional Effectiveness of Urban Wall-Planting Applied by a Biotope Area Ratio - Case of Jung-gu District in Seoul - (생태면적률 적용을 통한 도시 내 벽면녹화의 지역적 효과 분석 - 서울시 중구를 사례로 -)

  • Kang, Tae-Sun;Lee, Myung-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.5
    • /
    • pp.88-100
    • /
    • 2014
  • The purpose of the study is to analyze the regional effectiveness of wall-plantings by applying a biotope area ratio when wall-plantings are constructed in high density areas. For this, this study required a sample of the wall-planting's regional plan. Therefore, types of wall-planting were determined and applied to a sample site. Four types of wall-plantings were developed by formative features and functional features. Type "A" had simple and functional features, Type "B" had both mixed and functional features, Type "C" had both simple and landscape features and Type "D" had mixed and landscape features. Jung-gu District in Seoul was chosen as the sample site. Total investigations were performed three times for three months from June to August, 2011. Total green-able walls were located in 498 places with a total length of 8,449m and gross vertical area of $23,754.90m^2$. The classification results of total green-able walls by the four types were Type "A" at $1,936.65m^2$, Type "B" at $5,875.30m^2$, Type "C" at $12,487.85m^2$ and Type "D" at $3,455.10m^2$. This study analyzed how all facade areas of the green-able walls impacted the biotope area ratio at the site. First, the biotope area ratio regarding all the zones in Jung-gu District was defined as the gross biotope area ratio while the biotope area ratio regarding all of the artificial zones was defined as the net biotope area ratio. In the case of the gross biotope area ratio, 17.97% is current ration with a projected increase to 0.10% after wall-planting. In the case of the net biotope area ratio, 4.73% is the current ration with a projected increase to 0.11% after wall-planting. This 0.11% is about 2.28% of 4.73%. This study looks at all wall-plantings that have been constructed throughout a high density area to observe their impact on the improvement of ecological function therein. With consideration of the landscape value of the facade, the regional effectiveness of wall-planting is expected to increase even more.

Biotope Mapping of Pinus densiflora Based on Growth Environment of Tricholoma matsutake - A Case Study of Yangyang-gun, Kang Won-do - (송이 생육환경 특성을 고려한 소나무비오톱지도 작성 연구 - 강원도 양양군을 사례로 -)

  • Han, Bong-Ho;Park, Seok-Cheol;Kwak, Jeong-In;Kim, Bo-Hyun;Lee, Kyong-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.2
    • /
    • pp.211-226
    • /
    • 2011
  • The purpose of this paper was to ensure the basis for effective management of Tricholoma matsutake mountain province, to perform biotope mapping of Pinus densiflora based on growth environment of Tricholoma matsutake, target a cluster of Yangyang-gun, Kang Won-do. Study Methods were to review on growth and environmental characteristics of Tricholoma matsutake through internal and external documents and to identify vegetational structure and soil characteristics. This paper studied growth structure and soil environment of Pinus densiflora forest where a farm of production area for Tricholoma matsutake of in order to set the standard of Pinus densiflora biotope. Mapping standards were derived by separating of landform conditions, soil conditions, vegetation conditions. Biotope types were divided into possible production area for Tricholoma matsutake and potential production area for Tricholoma matsutake, possible production area for Tricholoma matsutake were Pinus densiflora biotope in landform and soil structure that enables Tricholoma matsutake production and Single-layered Pinus densiflora biotope of less than 30cm(DBH)-Tree species that other shrub is dominant in shrub layer, Multi-layered Pinus densiflora biotope that Pinus densiflora forest was predominant in understrory layer. Potential production area for Tricholoma matsutake were single-layered Pinus densiflora biotope of more than 30cm(DBH) in landform that enables Tricholoma matsutake production, Pinus densiflora biotope with Quercus predominant in the understrory layer, single-layered Pinus densiflora biotope with Quercus predominant in shrub layer, inappropriate vegetation structure area that the induction of production of Tricholoma matsutake was possible through future vegetation management. According to the research results, Pinus densiflora forest were divided into 16 types; 6 types of possible Tricholoma matsutake production areas, 9 potential Tricholoma matsutake production areas and 16 types of areas where Tricholoma matsutake production was impossible. Possible production areas account for 15.48%, or $9.8km^2$ out of the total Pinus densiflora forest while potential production areas take up 32.42%, or $20.52km^2$, and areas where Tricholoma matsutake production was impossible was 52.10%, or $32.97km^2$.

An Analysis on the Characteristics of the Hydrologic Cycle along Gyeongui Line Forest Park through time series analysis of Biotope Area Ratio and permeable ratio (생태면적률과 투수포장 비율의 시계열 분석을 통한 경의선숲길의 물 순환체계 특성 분석)

  • Kim, Mi-Hu;Oh, Choong-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.3
    • /
    • pp.105-119
    • /
    • 2020
  • The purpose of this study is to analyze the hydrologic cycle environment of Gyeongui Line Forest Park, a linear city park, in order to improve hydrologic cycle systems in urban areas. The method of the study is the Biotope Area Ratio and the Permeable ratio survey. The study subject is the Gyeongui Line Forest Park, created in 2016 as a linear park in Seoul. The results showed that the Biotope Area Ratio improved by 31.2% (31,927㎡) from 35.7% (36,480㎡) in 2000 to 66.9% (68,407㎡) in 2019 on a site area of 102,117㎡. Next, the Permeable ratio improved by 43.8% from 29.0% to 72.8%, and the impermeable ratio decreased by 43.8% from 71.0% to 27.2%. The Biotope Area Ratio exceeded the target ratio of 60% by 6.9%, set by the Ministry of Environment. The ratio of green space exceeded the target ratio of 60%, by 4.0%. And so they contributed to the improvement of the hydrologic cycle by the creation of the Gyeongui Line Forest Park. Urban parks need to exceed the Biotope Area Ratio and the green area ratio of the legal standards, especially when creating large parks of over 100,000 square meters, in the era of climate change. It is necessary to continuously plant trees in the space where trees can be planted, and to contribute to the improvement of the hydrologic cycle system and urban heat island effect by conducting three-dimensional.

A Study on Fauna Habitat Valuation of Urban Ecological Maps (도시생태현황지도 작성을 위한 육상동물 서식지 가치평가 방안 연구)

  • Park, Minkyu
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.5
    • /
    • pp.377-390
    • /
    • 2020
  • URBAN ECOLOGICAL MAPS must be created by local governments by NATURAL ENVIRONMENT CONSERVATION ACT, and the maps are generally called biotope map. So far, biotope maps study was a tendency to focus on the type of vegetation, naturalness, land use, landscape ecology theories. However, biotope related studies have not reflected the concept of animal habitat, which is a component of biotope, and that is the limitation of biotope map research. This study suggest a methodology to predict potential habitats for fauna using machine learning to quantify habitat values. The potential habitats of fauna were predicted by spatial statistics using machine learning, and the results were converted into species richness. For biotope type assessments, we classified biotope values into vegetation value and habitat value and evaluated them using a matrix for value summation. The vegetation value was divided into 5 stages based on vegetation nature and land use, and the habitat value was classified into five stages by predicting the species richness predicted by machine learning. This is meaningful because our research can positively reflect the results of field surveys of fauna that were negatively reflected in the evaluation of biotope types in the past. Therefore, in the future, if the biotope map manual is revised, our methodology should be applied.

Biotope Mapping and Evaluation in Gangseo-Gu of Busan Metropolitan City (부산광역시 강서구의 비오톱 지도작성 및 평가)

  • Choi, Song-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.3
    • /
    • pp.92-106
    • /
    • 2008
  • The purpose of this study is to identify land use types and to develop and evaluate biotope maps for Gangseo-Gu (ward) in Busan Metropolitan City, South Korea, using the Degree of Hemeroby. Hemeroby is a measurement concept or tool to assess the magnitude of human impact on ecosystems. Gangseo-Gu is the second largest Gu in Busan and is under strong development pressure. Before the field survey, biotopes were pre-classified based on digital maps, aerial photos and high-resolution satellite images. The method employed in biotope survey and mapping was adopted from the modified method used in Seoul, which carried out the first biotope mapping in Korea in 2000. In the field survey, a comprehensive biotope mapping method was used. The results showed that the total surface area of biotopes in Gangseo-gu was $172,620,207m^2$(42,655 acres) and there were 29 biotope types with 13,631 polygons. The ratio of urban or built-up area 22.6% and the remaining areas were forest and open spaces, of which 22.6% were actual forest areas and 35.6% were paddy fields and other field areas. The Hemeroby Index of Gangseo-gu was 54.7, which suggests that Gangseo-gu has not yet been developed extensively and needs a long-term conservation and coordinated development plan.

  • PDF