• Title/Summary/Keyword: biotic stress

Search Result 118, Processing Time 0.03 seconds

Development of Stress-tolerant Crop Plants

  • Choi, Hyung-In;Kang, Jung-Youn;Sohn, Hee-Kyung;Kim, Soo-Young
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.41-47
    • /
    • 2002
  • Adverse environmental conditions such as drought, high salt and cold/freezing are major factors that reduces crop productivity worldwide. According to a survey, 50-80% of the maximum potential yield is lost by these 'environmental or abiotic stresses', which is approximately ten times higher than the loss by biotic stresses. Thus, improving stress-tolerance of crop plants is an important way to improve agricultural productivity. In order to develop such stress-tolerant crop plants, we set out to identify key stress signaling components that can be used to develop commercially viable crop varieties with enhanced stress tolerance. Our primary focus so far has been on the identification of transcription factors that regulate stress responsive gene expression, especially those involved in ABA-mediated stress response. Be sessile, plants have the unique capability to adapt themselves to the abiotic stresses. This adaptive capability is largely dependent on the plant hormone abscisic acid (ABA), whose level increases under various stress conditions, triggering adaptive response. Central to the response is ABA-regulated gene expression, which ultimately leads to physiological changes at the whole plant level. Thus, once identified, it would be possible to enhance stress tolerance of crop plants by manipulating the expression of the factors that mediate ABA-dependent stress response. Here, we present our work on the isolation and functional characterization of the transcription factors.

  • PDF

Enhancement of Bioactive Compounds in Mugwort Grown under Hydroponic System by Sucrose Supply in a Nutrient Solution (양액 내 자당 처리에 의한 수경재배 쑥의 생리활성물질 증진)

  • Moon-Sun Yeom;Jun-Soo Lee;Myung-Min Oh
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • Sucrose (suc) is a disaccharide that consists of glucose (glu) and fructose (fru). It is a carbohydrate source that acts as a nutrient molecule and a molecular signal that regulates gene expression and alters metabolites. This study aimed to evaluate whether suc-specific signaling induces an increase in bioactive compounds by exogenous suc absorption via roots or whether other factors, such as osmotic stress or biotic stress, are involved. To compare the osmotic stress induced by suc treatment, 4-week-old cultured mugwort plants were subjected to Hoagland nutrient solution with 10 mM, 30 mM, and 50 mM of suc or mannitol (man) for 3 days. Shoot fresh weight in suc and man treatments was not significantly different from the control. Both man and suc treatments increased the content of bioactive compounds in mugwort, but they displayed different enhancement patterns compared to the suc treatments. Mugwort extract treated with suc 50 mM effectively protected HepG2 liver cells damaged by ethanol and t-BHP. To compare the biotic stress induced by suc treatment, 3-week-old mugwort plants were subjected to microorganism and/or suc 30 mM with Hoagland nutrient solution. Microorganisms and/or suc 30 mM treatments showed no difference about the shoot fresh weight. However, sugar content in mugwort treated with suc 30 mM and microorganism with suc 30 mM treatment was significantly higher than that of the control. Suc 30 mM and microorganism with suc 30 mM were effective in enhancing bioactive compounds than microorganism treatment. These results suggest that mugwort plants can absorb exogenous suc via roots and the enhancement of bioactive compounds by suc treatment may result not from osmotic stress or biotic stress because of microorganism, but by suc-specific signaling.

Locating QTLs controlling overwintering seedling rate in perennial glutinous rice 89-1 (Oryza sativa L.)

  • Deng, Xiaoshu;Gan, Lu;Liu, Yan;Luo, Ancai;Jin, Liang;Chen, Jiao;Tang, Ruyu;Lei, Lixia;Tang, Jianghong;Zhang, Jiani;Zhao, Zhengwu
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1351-1361
    • /
    • 2018
  • A new cold tolerant germplasm resource named glutinous rice 89-1 (Gr89-1, Oryza sativa L.) can overwinter using axillary buds, with these buds being ratooned the following year. The overwintering seedling rate (OSR) is an important factor for evaluating cold tolerance. Many quantitative trait loci (QTLs) controlling cold tolerance at different growth stages in rice have been identified, with some of these QTLs being successfully cloned. However, no QTLs conferring to the OSR trait have been located in the perennial O. sativa L. To identify QTLs associated with OSR and to evaluate cold tolerance. 286 $F_{12}$ recombinant inbred lines (RILs) derived from a cross between the cold tolerant variety Gr89-1 and cold sensitive variety Shuhui527 (SH527) were used. A total of 198 polymorphic simple sequence repeat (SSR) markers that were distributed uniformly on 12 chromosomes were used to construct the linkage map. The gene ontology (GO) annotation of the major QTL was performed through the rice genome annotation project system. Three main-effect QTLs (qOSR2, qOSR3, and qOSR8) were detected and mapped on chromosomes 2, 3, and 8, respectively. These QTLs were located in the interval of RM14208 (35,160,202 base pairs (bp))-RM208 (35,520,147 bp), RM218 (8,375,236 bp)-RM232 (9,755,778 bp), and RM5891 (24,626,930 bp)-RM23608 (25,355,519 bp), and explained 19.6%, 9.3%, and 11.8% of the phenotypic variations, respectively. The qOSR2 QTL displayed the largest effect, with a logarithm of odds score (LOD) of 5.5. A total of 47 candidate genes on the qOSR2 locus were associated with 219 GO terms. Among these candidate genes, 11 were related to cell membrane, 7 were associated with cold stress, and 3 were involved in response to stress and biotic stimulus. OsPIP1;3 was the only one candidate gene related to stress, biotic stimulus, cold stress, and encoding a cell membrane protein. After QTL mapping, a total of three main-effect QTLs-qOSR2, qOSR3, and qOSR8-were detected on chromosomes 2, 3, and 8, respectively. Among these, qOSR2 explained the highest phenotypic variance. All the QTLs elite traits come from the cold resistance parent Gr89-1. OsPIP1;3 might be a candidate gene of qOSR2.

Gene Expression Profiling in Rice Infected with Rice Blast Fungus using SAGE

  • Kim, Sang-Gon;Kim, Sun-Tae;Kim, Sung-Kun;Kang, Kyu-Young
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.384-391
    • /
    • 2008
  • Rice blast disease, caused by the pathogenic fungus Magnaporthe grisea, is a serious issue in rice (Oryza sativa L.) growing regions of the world. Transcript profiling in rice inoculated with the fungus has been investigated using the transcriptomics technology, serial analysis of gene expression (SAGE). Short sequence tags containing sufficient information which are ten base-pairs representing the unique transcripts were identified by SAGE technology. We identified a total of 910 tag sequences via the GenBank database, and the resulting genes were shown to be up-regulated in all functional categories under the fungal biotic stress. Compared to the compatible interaction, the stress and defense genes in the incompatible interaction appear to be more up-regulated. Particularly, thaumatin-like gene (TLP) was investigated in determining the gene and protein expression level utilizing Northern and Western blotting analyses, resulting in an increase in both the gene and the protein expression level which arose earlier in the incompatible interaction than in the compatible interaction.

The Bacillus zanthoxyli HS1 Strain Renders Vegetable Plants Resistant and Tolerant against Pathogen Infection and High Salinity Stress

  • Usmonov, Alisher;Yoo, Sung-Je;Kim, Sang Tae;Yang, Ji Sun;Sang, Mee Kyung;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • v.37 no.1
    • /
    • pp.72-78
    • /
    • 2021
  • Various management systems are being broadly employed to minimize crop yield loss resulting from abiotic and biotic stresses. Here we introduce a Bacillus zanthoxyli HS1 strain as a potent candidate for managing manifold stresses on vegetable plants. Considering 16S rDNA sequence and biochemical characteristics, the strain is closely related to B. zanthoxyli. The B. zanthoxyli HS1's soil-drench confers disease resistance on tomato and paprika plants against infection with Ralstonia solanacearum and Phytophthora capsici, respectively. Root and shoot growths are also increased in B. zanthoxyli HS1-treated cabbage, cucumber, and tomato plants, compared with those in mock-treated plants, after application of high salinity solution. Moreover, the pretreatment of B. zanthoxyli HS1 on cabbage plants inhibits the degradation of chloroplast pigments caused by high salinity stresses, whereas the inhibitory effect is not observed in cucumber plants. These findings suggest that B. zanthoxyli HS1 stain inhibits disease development and confers tolerance to salinity stress on vegetable plants.

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong;Tae Ho Ryu;Hyo-Jeong Lee;Kook-Hyung Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.449-465
    • /
    • 2023
  • Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.

Genome-Wide Comprehensive Analysis of the GASA Gene Family in Peanut (Arachis hypogaea L.)

  • Rizwana B.Syed Nabi;Eunyoung Oh;Sungup Kim;Kwang-Soo Cho;Myoung Hee Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.231-231
    • /
    • 2022
  • The GASA protein (Gibberellic acid-stimulated Arabidopsis) are family of small cysteine-rich peptides found in plants. These GASA gene family mainly involved in biotic/abiotic stress responses and plant development. Despite being present in a wide plant species, their action and functions still remain unclear. In this study, using the in-silico analysis method we identified 41 GASA genes in peanuts (Arachis hypogaea L.). Based on the phylogenetic analysis 41 GASA genes are classified in the four major clusters and subclades. Mainly, clusters IV and III comprise the majority of GASA genes 15 and 11 genes respectively, followed by cluster I and cluster II with 9 and 6 genes respectively. Additionally, based on in-silico analysis we predicted the post-transcriptional and post-translational changes of GASA proteins under abiotic stresses such as drought and salt stress would aid our understanding of the regulatory mechanisms. Hence, a further study is planned to evaluate the expression of these GASA genes under stress in different plant tissues to elucidate the possible functional role of GASA genes in peanut plants. These findings might offer insightful data for peanut advancement.

  • PDF

The ACC deaminase from rhizobateria promoted resistance of salininty stress in seedling and growth of plant

  • Soh, Byoung-Yul;Lee, Gun-Woong;Ju, Jae-Eun;Kim, Hae-Min;Chae, Jong-Chan;Lee, Yong-Hoon;Oh, Byung-Taek;Lee, Kui-Jae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.17-17
    • /
    • 2010
  • Rhizobacteria are a diverse group of free-living soil bacteria that live in plant rhizosphere and colonized the root system. Plant growth-promoting rhizobacteria (PGPR) possessing ACC deaminase (ACCD) can reduce ACC and ethylene in plant tissue and mediated the growth of plants under various stresses including salt stress. ACCD decrease ethylene levels in plant tissue that produce high levels of ethylene in tissue via elevated levels of ACC under salt stress. We selected strains of Pseudomonas sp. possessing ACCD activity for their ability to promote plant growth under salt stress from soil sample collected at Byeonsan, Jeonbuk, South Korea. The Pseudomonas strains possessing ACCD increased the rate of the seedling and growth of chinese cabbage seeds under salt stress. We cloned ACCD gene from P.fluorescens and expressed recombinant protein in Escherichia coli. The active form of recombinant ACCD converted ACC to a-ketobutyrate. The in vivo treatment of recombinant ACCD itself increase the rate of the seedling and growth of Chinese cabbage seeds under salt stress. The polyclonal P.fluorescens anti-ACCD antibody specifically reacted with ACCD originated from Pseudomonas. This indicates that the antibody might act as an important indicator for ACCD driven from Pseudomonas exhibiting plant growth-promoting activity. This study will be useful for identification of newly isolated PGPR containing ACCD and exploioting the ACCD activity from PGPR against various biotic and abiotic stresses.

  • PDF

Importance and production of chilli pepper; heat tolerance and efficient nutrient use under climate change conditions

  • Khaitov, Botir;Umurzokov, Mirjalol;Cho, Kwang-Min;Lee, Ye-Jin;Park, Kee Woong;Sung, JwaKyung
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.769-779
    • /
    • 2019
  • Chilli peppers are predominantly cultivated in open field systems under abiotic and biotic stress conditions. Abiotic and biotic factors have a considerable effect on plant performance, fruit quantity, and quality. Chilli peppers grow well in a tropical climate due to their adaptation to warm and humid regions with temperatures ranging from 18 to 30℃. Nowadays, chilli peppers are cultivated all around the world under different climatic conditions, and their production is gradually expanding. Expected climate changes will likely cause huge and complex ecological consequences; high temperature, heavy rainfall, and drought have adverse effects on the vegetative and generative development of all agricultural crops including chilli peppers. To gain better insight into the effect of climate change, the growth, photosynthetic traits, morphological and physiological characteristics, yield, and fruit parameters of chilli peppers need to be studied under simulated climate change conditions. Moreover, it is important to develop alternative agrotechnologies to maintain the sustainability of pepper production. There are many conceivable ideas and concepts to sustain crop production under the extreme conditions of future climate change scenarios. Therefore, this review provides an overview of the adverse impacts of climate change and discusses how to find the best solutions to obtain a stable chilli pepper yield.

The Summer Benthic Environmental Conditions Assessed by the Functional Groups of Macrobenthic Fauna in Gwangyang Bay, Southern Coast of Korea (저서동물에 의한 여름철 광양만의 저서환경 상태파악)

  • Choi, Jin-Woo;Hyun, Sang-Min;Chang, Man
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.101-113
    • /
    • 2003
  • The spatial distributional pattern of macrobenthic fauna was investigated to assess the summer benthic environmental conditions in Gwangyang Bay, the southern coast of Korea. The macrobenthic faunal community from 38 sites in Gwangyang Bay comprised 154 species and showed an overall mean density of 1,280 individuals $m^{-2}$. Polychaetes were the most important component of the macrofaunal community in species richness, abundance and biomass. The dominant species in abundance were polychaetes like Tharyx sp. (44.8%), Lumbrineris longifolia (14.0%), Heteromastus filiformis (3.6%), a mussel Mytilus edulis, and an amphipod crustacean Corophium sinense. The abundance and biomass in the western part of the bay were lower than those in the channel regions and mouth of the bay. The community indices showed the same trend in the spatial distribution with the abundance and species richness. All macrobenthic faunas were assigned into a specific functional group according to their ecological responses to the environmental stress. The benthic community health based on the Benthic Pollution Index (BPI) or Biotic Coefficient (BC) seemed to be in the normal to unbalanced er transitional condition, indicated by the dominance of small polychaete worms like Tharyx sp. in the mouth part of the bay.