• 제목/요약/키워드: biot-savart law

검색결과 37건 처리시간 0.031초

공심형 HTS 동기발전기의 계자 형상 변화에 따른 특성연구 (Characteristic Study According to the Shape of Field in the Air-cored HTS Synchronous Generator)

  • 조영식;안호진;홍정표;이주;권영길;류강식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.849-851
    • /
    • 2000
  • The value of $I_c$(critical current) in HTS (High Temperature Superconductor) tape has a great influence on $B{\bot}$ (vertical field). Therefore, in shape design of field coil for the HTSG(High Temperature Superconducting Generator), a method to reduce the $B{\bot}$ should be considered in order to maintain the stability and substantial improvement on the performance. On the basis of the magnetic field analysis, this paper deals with various field coil shape to obtain small $B{\bot}$ by using Biot-Savart's law and image method. Moreover the analysis is verified by comparison with experimental results. And also this paper presents the advanced model by using 3D FEM(3 Dimensional Finite Element Method), in which flux density at armature is calculated in 5kVA class HTSG.

  • PDF

개선된 입자와법을 이용한 급 출발하는 실린더 주위의 비정상 점성 유동 시뮬레이션 (Simulations of the Unsteady Viscous Flow Around an Impulsively Started Cylinder Using Improved Vortex Particle Method)

  • 진동식;이상환;이주희
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.733-743
    • /
    • 2000
  • We solve the integral representation of the Navier-Stokes equations in a lagrangian view by tracking the particles, which have vortex strengths. We simulate the unsteady viscous flow around an impulsively started cylinder using the vortex particle method. Particles are advanced via the Biot-Savart law for a lagrangian evolution of particles. The particle strength is modified based on the scheme of particle strength exchange. The solid boundary satisfies the no-slip boundary condition by the vorticity generation algorithm. We newly modify the diffusion scheme and the boundary condition for simulating an unsteady flow efficiently. To save the computation time, we propose the mixed scheme of particle strength exchange and core expansion. We also use a lot of panels to ignore the curvature of the cylinder, and not to solve the evaluation of the surface density. Results are compared to those from other theoretical and experimental works.

Theoretical and Experimental Analysis of Extremely Low Frequency Magnetic Field in the Vicinity of the Transformer Station of Overhead Power Lines

  • Ghnimi, Said;Rajhi, Adnen;Gharsallah, Ali;Bizid, Youssef
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1655-1662
    • /
    • 2018
  • This paper studies the magnetic fields between the power lines which are finite length and other ones which are infinitely long around the first tower in the proximity of the power transformers. They will be used as a source of disturbance applied to the power line. The method applied in this study was gradual; develop the theoretical formulation of the magnetic fields of these lines which are finite length and other ones which are infinitely long, examine the effects of different couplings between the different neighboring lines and the distribution transformers on behavior of magnetic fields. The method also focused on the experimental results analyzing the magnetic fields which will be used as a source applied to the auditory implants EMC. The theoretical and experimental results were compared and discussed for three power lines (90kV, 150kV and 225kV) near the power station, and it proved the effect of these substations on the simulated and measured results of the magnetic field. The maximum intensities of magnetic fields measured at the height of 1m from the ground for the circuit of three lines close to each substation were significantly lower than the ICNIRP reference levels for occupational and non occupational exposures.

Lorentz Force Density Distribution of a Current Carrying Superconducting Tape in a Perpendicular Magnetic Field

  • Yoo, J.;Kwak, K.;Rhee, J.;Park, C.;Youm, D.;Park, B.J.;Han, Y.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권4호
    • /
    • pp.13-16
    • /
    • 2010
  • The Lorentz force distribution of a high $T_c$ superconducting tape with increasing transport currents in magnetic field ($H_a$) was visualized. The external magnetic field was applied normally to the coated conductor tape surface after zero-field cooling, and the transport current ($I_a$) was increased stepwise from 0 to 90 % of the values of the critical current ($I_c$ ($H_a$)) at applied filed, Ha. The field distribution (H(x)) near the sample surface across the tape width (2w) was measured using the scanning Hall probe method. Applying an inversion to the measured field distribution, we obtained the underlying current distribution (J(x)), from which the magnetic induction, B(x) was calculated with Biot-Savart law. Then Lorentz force per unit length was calculated using F(x)=J(x)${\times}$B(x), which appears to be very inhomogeneous along the tape width due to the complicated distributions of J(x) and B(x).

Statistical analysis for HTS coil considering inhomogeneous Ic distribution of HTS tape

  • Jin, Hongwoo;Lee, Jiho;Lee, Woo Seung;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권2호
    • /
    • pp.41-44
    • /
    • 2015
  • Critical current of high-temperature superconducting (HTS) coil is influenced by its own self magnetic field. Direction and density distribution of the magnetic field around the coil are fixed after the shape of the coil is decided. If the entire part of the HTS tape has homogeneous $I_c$ distribution characteristic, quench would be initiated in fixed location on the coil. However, the actual HTS tape has inhomogeneous $I_c$ distribution along the length. If the $I_c$ distribution of the HTS tape is known, we can expect the spot within the HTS coil that has the highest probability to initiate the quench. In this paper, $I_c$ distribution within the HTS coil under self-field effect is simulated by MATLAB. In the simulation procedure, $I_c$ distribution of the entire part of the HTS tape is assume d to follow Gaussian-distribution by central limit theorem. The HTS coil model is divided into several segments, and the critical current of each segment is calculated based on the-generalized Kim model. Single pancake model is simulated and self-field of HTS coil is calculated by Biot-Savart's law. As a result of simulation, quench-initiating spot in the actual HTS coil can be predicted statistically. And that statistical analysis can help detect or protect the quench of the HTS coil.

정상군 및 허혈성 심질환 환자군에서의 심자도 파라미터 비교 (Comparison of Magnetocardiogram Parameters Between a Ischemic Heart Disease Group and Control Group)

  • 박종덕;허영;진승오;전성채
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권11호
    • /
    • pp.680-688
    • /
    • 2005
  • The electrical current generated by heart creates not only electric potential but also a magnetic field. We have observed electrophysiological phenomena of the heart by measuring components of magnetocardiogram(MCG) using 61 channel superconducting quantum interference device(SQUD) system. We have analyzed the possibility and characteristics of MCG parameters for diagnosis of ischemic heart disease. A technique for automatic analysis of MCG signals in time domain was developed. The methods for detecting the position, the interval, the amplitude ratio, and the direction of single current dipole were examined in the MCG wave. The position and interval parameters were obtained by calculating the gradients of a envelope curve which could be formed by the difference between the maximum and minimum envelope of multi-channel MCG signals. We show some differences of the frequency contour map between the normal MCG and the abnormal (ischemic heart disease) MCG. The direction of single current dipole can be defined by rotating the magnetic field according to Biot-Savart's law at each point of MCG signals. In this study, we have examined the direction of single current dipole from searching for the centroids of positive and negative magnetic fields. The amplitude ratio parameters for measuring 57 deviation consisted of A$_{T}$/A$_{R}$ and other ratios. and We developed a new analysis method, which is based on the frequency contour map of electromagnetic field. Using theses parameters, we founded significant differences between normal subjects and ischemic patients in some parameters.

The effect of Volume Expansion on the Propagation of Wrinkled Laminar Premixed Flame

  • Chung, E.H.;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.139-154
    • /
    • 1998
  • Under certain circumstance, premixed turbulent flame can be treated as wrinkled thin laminar flame and its motion in a hydrodynamic flow field has been investigated by employing G-equation. Past studies on G-equation successfully described certain aspects of laminar flame propagation such as effects of stretch on flame speed. In those studies, flames were regarded as a passive interface that does not influence the flow field. The experimental evidences, however, indicate that flow field can be significantly modified by the propagation of flames through the volume expansion of burned gas. In the present study, a new method to be used with G -equation is described to include the effect of volume expansion in the flame dynamics. The effect of volume expansion on the flow field is approximated by Biot-Savart law. The newly developed model is validated by comparison with existing analytical solutions of G -equation to predict flames propagating in hydrodynamic flow field without volume expansion. To further investigate the influence of volume expansion, present method was applied to initially wrinkled or planar flame propagating in an imposed velocity field and the average flame speed was evaluated from the ratio of flame surface area and projected area of unburned stream channel. It was observed that the initial wrinkling of flame cannot sustain itself without velocity disturbance and wrinkled structure decays into planar flame as the flame propagates. The rate of decay of the structure increased with volume expansion. The asymptotic change in the average burning speed occurs only with disturbed velocity field. Because volume expansion acts directly on the velocity field, the average burning speed is affected at all time when its effect is included. With relatively small temperature ratio of 3, the average flame speed increased 10%. The combined effect of volume expansion and flame stretch is also considered and the result implied that the effect of stretch is independent of volume release.

  • PDF