• Title/Summary/Keyword: biosynthetic regulation

Search Result 69, Processing Time 0.024 seconds

Overexpression in Arabidopsis of a Plasma Membrane-targeting Glutamate Receptor from Small Radish Increases Glutamate-mediated Ca2+ Influx and Delays Fungal Infection

  • Kang, Seock;Kim, Ho Bang;Lee, Hyoungseok;Choi, Jin Young;Heu, Sunggi;Oh, Chang Jae;Kwon, Soon Il;An, Chung Sun
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.418-427
    • /
    • 2006
  • Ionotropic glutamate receptors (iGluRs) are ligand-gated nonselective cation channels that mediate fast excitatory neurotransmission. Although homologues of the iGluRs have been identified in higher plants, their roles are largely unknown. In this work we isolated a full-length cDNA clone (RsGluR) encoding a putative glutamate receptor from small radish. An RsGluR:mGFP fusion protein was localized to the plasma membrane. In Arabidopsis thaliana overexpressing the fulllength cDNA, glutamate treatment triggered greater $Ca^{2+}$ influx in the root cells of transgenic seedlings than in those of the wild type. Transgenic plants exhibited multiple morphological changes such as necrosis at their tips and the margins of developing leaves, dwarf stature with multiple secondary inflorescences, and retarded growth, as previously observed in transgenic Arabidopsis overexpressing AtGluR3.2 [Kim et al. (2001)]. Microarray analysis showed that jasmonic acid (JA)-responsive genes including defensins and JA-biosynthetic genes were up-regulated. RsGluR overexpression also inhibited growth of a necrotic fungal pathogen Botrytis cinerea possibly due to up-regulation of the defensins. Based on these results, we suggest that RsGluR is a glutamate-gated $Ca^{2+}$ channel located in the plasma membrane of higher plants and plays a direct or indirect role in defense against pathogen infection by triggering JA biosynthesis.

Characterization of Putative Capsaicin Synthase Promoter Activity

  • Kim, June-Sik;Park, Minkyu;Lee, Dong Ju;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.331-339
    • /
    • 2009
  • Capsaicin is a very important secondary metabolite that is unique to Capsicum. Capsaicin biosynthesis is regulated developmentally and environmentally in the placenta of hot pepper. To investigate regulation of capsaicin biosynthesis, the promoter (1,537 bp) of pepper capsaicin synthase (CS) was fused to GUS and introduced into Arabidopsis thaliana (Col-0) via Agrobacterium tumefaciens to produce CSPRO::GUS transgenic plants. The CS was specifically expressed in the placenta tissue of immature green fruit. However, the transgenic Arabidopsis showed ectopic GUS expressions in the leaves, flowers and roots, but not in the stems. The CSPRO activity was relatively high under light conditions and was induced by both heat shock and wounding, as CS transcripts were increased by wounding. Exogenous capsaicin caused strong suppression of the CSPRO activity in transgenic Arabidopsis, as demonstrated by suppression of CS expression in the placenta after capsaicin treatment. Furthermore, the differential expression levels of Kas, Pal and pAmt, which are associated with the capsaicinoid biosynthetic pathway, were also suppressed in the placenta by capsaicin treatment. These results support that capsaicin, a feedback inhibitor, plays a pivotal role in regulating gene expression which is involved in the biosynthesis of capsaicinoids.

Increased Production of Amino Acids in an Escherichia coli rpoS Mutant (RpoS 대장균 돌연변이 균주에서 아미노산의 생산 증가)

  • Jung, Il-Lae;Kim, In-Gyu
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.263-267
    • /
    • 2009
  • An RpoS factor is a transcriptional regulator which participates in numerous biological processes. In this work, we investigated the transcriptional regulation of proBA and proC composing proline biosynthetic pathway in Escherichia coli. While the proBA and proC genes were greatly induced in an exponential growth phase, they were dramatically repressed in a stationary growth phase in the wild type E. coli. Unlike the wild type E. coli, the proBA and proC genes were not repressed even in the stationary growth phase in its isogenic rpoS mutant. These results suggest that the RpoS factor acts as a transcriptional repressor of proBA and proC genes. The production of threonine, methionine, lysine, and arginine in the rpoS mutant were also increased by more than two times compared to its parental wild type, suggesting that the mutant is able to be used as an useful host strain for the amino acid overproduction.

Antagonistic Regulation of Arabidopsis Growth by Brassinosteroids and Abiotic Stresses

  • Chung, Yuhee;Kwon, Soon Il;Choe, Sunghwa
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.795-803
    • /
    • 2014
  • To withstand ever-changing environmental stresses, plants are equipped with phytohormone-mediated stress resistance mechanisms. Salt stress triggers abscisic acid (ABA) signaling, which enhances stress tolerance at the expense of growth. ABA is thought to inhibit the action of growth-promoting hormones, including brassinosteroids (BRs). However, the regulatory mechanisms that coordinate ABA and BR activity remain to be discovered. We noticed that ABA-treated seedlings exhibited small, round leaves and short roots, a phenotype that is characteristic of the BR signaling mutant, brassinosteroid insensitive1-9 (bri1-9). To identify genes that are antagonistically regulated by ABA and BRs, we examined published Arabidopsis microarray data sets. Of the list of genes identified, those upregulated by ABA but downregulated by BRs were enriched with a BRRE motif in their promoter sequences. After validating the microarray data using quantitative RT-PCR, we focused on RD26, which is induced by salt stress. Histochemical analysis of transgenic Arabidopsis plants expressing RD26pro:GUS revealed that the induction of GUS expression after NaCl treatment was suppressed by co-treatment with BRs, but enhanced by co-treatment with propiconazole, a BR biosynthetic inhibitor. Similarly, treatment with bikinin, an inhibitor of BIN2 kinase, not only inhibited RD26 expression, but also reduced the survival rate of the plant following exposure to salt stress. Our results suggest that ABA and BRs act antagonistically on their target genes at or after the BIN2 step in BR signaling pathways, and suggest a mechanism by which plants fine-tune their growth, particularly when stress responses and growth compete for resources.

Repression of Escherichia coli serC-aroA Operon by Aromatic Amino Acids (방향족 아미노산에 의한 대장균 serC-aroA Operon의 발현 억제)

  • Hwang, Woo-Gil;Sa, Jae-Hoon;Kim, Kyung-Hoon;Lim, Chang-Jin
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.109-114
    • /
    • 1994
  • The Escherichia coli aroA and serC genes constitute a mixed-function operon which involves in two different amino acid biosynthetic pathways. The regulation of expression of serC-aroA operon was evaluated through the use of a serC-araA-lacZ fusion plasmid pWH2. The expression of the serC-aroA operon was decreased by aromatic amino acids such as tyrosine, tryptophan, and phenylalanine. The repressible effects were diminished in E. coli tyrR of trpR strain, indicating the involvemnt of TyrR of TrpR protein in the repression. Tyrosine was competitie with cAMP in the influence on the expression of the serC-AroA operon. From these data, it was suggested that the serC-aroA operon is controlled by aromatic amino acids in a negative manner.

  • PDF

Age-induced Changes in Ginsenoside Accumulation and Primary Metabolic Characteristics of Panax Ginseng in Transplantation Mode

  • Wei Yuan;Qing-feng Wang;Wen-han Pei;Si-yu Li;Tian-min Wang;Hui-peng Song;Dan Teng;Ting-guo Kang;Hui Zhang
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.103-111
    • /
    • 2024
  • Background: Ginseng (Panax ginseng Mayer) is an important natural medicine. However, a long culture period and challenging quality control requirements limit its further use. Although artificial cultivation can yield a sustainable medicinal supply, research on the association between the transplantation and chaining of metabolic networks, especially the regulation of ginsenoside biosynthetic pathways, is limited. Methods: Herein, we performed Liquid chromatography tandem mass spectrometry based metabolomic measurements to evaluate ginsenoside accumulation and categorise differentially abundant metabolites (DAMs). Transcriptome measurements using an Illumina Platform were then conducted to probe the landscape of genetic alterations in ginseng at various ages in transplantation mode. Using pathway data and crosstalk DAMs obtained by MapMan, we constructed a metabolic profile of transplantation Ginseng. Results: Accumulation of active ingredients was not obvious during the first 4 years (in the field), but following transplantation, the ginsenoside content increased significantly from 6-8 years (in the wild). Glycerolipid metabolism and Glycerophospholipid metabolism were the most significant metabolic pathways, as Lipids and lipid-like molecule affected the yield of ginsenosides. Starch and sucrose were the most active metabolic pathways during transplantation Ginseng growth. Conclusion: This study expands our understanding of metabolic network features and the accumulation of specific compounds during different growth stages of this perennial herbaceous plant when growing in transplantation mode. The findings provide a basis for selecting the optimal transplanting time.

Time-dependent proteomic and genomic alterations in Toll-like receptor-4-activated human chondrocytes: increased expression of lamin A/C and annexins

  • Ha, Seung Hee;Kim, Hyoung Kyu;Nguyen, Thi Tuyet Anh;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.531-546
    • /
    • 2017
  • Activation of Toll-like receptor-4 (TLR-4) in articular chondrocytes increases the catabolic compartment and leads to matrix degradation during the development of osteoarthritis. In this study, we determined the proteomic and genomic alterations in human chondrocytes during lipopolysaccharide (LPS)-induced inflammation to elucidate the underlying mechanisms and consequences of TLR-4 activation. Human chondrocytes were cultured with LPS for 12, 24, and 36 h to induce TLR-4 activation. The TLR-4-induced inflammatory response was confirmed by real-time PCR analysis of increased interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis factor alpha ($TNF-{\alpha}$) expression levels. In TLR-4-activated chondrocytes, proteomic changes were determined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-mass spectroscopy analysis, and genomic changes were determined by microarray and gene ontology analyses. Proteomics analysis identified 26 proteins with significantly altered expression levels; these proteins were related to the cytoskeleton and oxidative stress responses. Gene ontology analysis indicated that LPS treatment altered specific functional pathways including 'chemotaxis', 'hematopoietic organ development', 'positive regulation of cell proliferation', and 'regulation of cytokine biosynthetic process'. Nine of the 26 identified proteins displayed the same increased expression patterns in both proteomics and genomics analyses. Western blot analysis confirmed the LPS-induced increases in expression levels of lamin A/C and annexins 4/5/6. In conclusion, this study identified the time-dependent genomic, proteomic, and functional pathway alterations that occur in chondrocytes during LPS-induced TLR-4 activation. These results provide valuable new insights into the underlying mechanisms that control the development and progression of osteoarthritis.

Flavonoid Metabolic Engineering for Modification of Flower Color in Chrysanthemum (국화 꽃색 변경을 위한 플라보노이드 대사공학)

  • Kim, Da-Hye;Park, Sangkyu;Park, Bo-Ra;Lee, Jong-Yeol;Lim, Sun-Hyung
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.351-363
    • /
    • 2018
  • In ornamental crops, the color and shape of flowers are one of the important traits. Generally, flower colors are determined by accumulating pigments such as carotenoids, flavonoids, and betalains. Among them, flavonoids are responsible for broad ranges of colors. Chrysanthemums are one of the most popular ornamental crops in the world, and there have been many efforts to change their flower color. In chrysanthemum flowers, cyanidin-based anthocyanin confers pink or red color, whereas terpenoid-based carotenoids are mainly responsible for yellow and green colors. However, blue colored chrysanthemums do not occur in nature. To date, there have been attempts to obtain blue or violet-colored chrysanthemum flowers through the introduction of a novel gene for accumulating delphinidin-based anthocyanins, while other studies have reported changing endogenous metabolites through the reconstruction of flavonoid biosynthesis. Since various transcription factors are involved in the regulation of flavonoid biosynthesis, it is important to understand not only the structural genes, but also the transcription factors required for the modification of flavonoid-based flower color. Therefore, in this paper, we describe the flavonoid biosynthetic pathway and its regulation, and review previous studies on the change in flower color through modification of flavonoid biosynthesis. This effort could be an important milestone in successfully achieving the modification of chrysanthemum flower color by means of plant biotechnology.

Carbohydrate Metabolism in Preimplantation Stage Embryos and the Role of Metabolites (착상전 초기 배아에서 탄수화물 대사와 그 대사물의 역할)

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2008
  • Proper development of fertilized oocyte to blastocyst is a key step in mammalian development to implantation. During development of preimplantation embryos, the mammalian embryo needs supply the energy substrate for keep viability. Usually mammalian oocyte get substrate especially energy substrate from oviduct and uterus, because it does not store much substrate into cytoplasm during oogenesis. Carbohydrates are known as a main energy substrate for preimplantation stage embryos. Glucose, lactate and pyruvate are essential component in preimplantation embryo culture media and there are stage specific preferences to them. Glucose transporter and $H^+$-monocarboxylate cotransporter are a main mediator for carbohydrate transport and those expression levels are primarily under the control of intrinsic or extrinsic factors like insulin and glucose. Other organic substances, amino acids, lipids and nucleotides are used as energy substance and cellular regulation factor. Though since 1960s, successful development of fertilized embryo to blastocyst has been accomplished with chemically defined medium for example BWW and give rise to normal offspring in mammals, the role of metabolites and the regulation of intermediary metabolism are still poorly understood. Glucose may permit expression of metabolic enzymes and transporters in compacting morula, capable of generating the energy required for blastocyst formation. In addition, it has been suggested that the cytokines can modulate the metabolic rate of carbohydrate in embryos and regulate the preimplantation embryonic development through control the metabolic rate. Recently we showed that lactate can be used as a mediator for preimplantation embryonic development. Those observations indicate that metabolites of carbohydrate are required by the early embryo, not only as an energy source, but also as a key substrate for other regulatory and biosynthetic pathways. In addition metabolites of carbohydrate may involve in cellular activity during development of preimplantation embryos. It is suggested that through these regulation and with other regulation mechanisms, embryo and uterus can prepare the embryo implantation and further development, properly.

  • PDF

Importance of C-26 Demethylation for Homeostatic Regulation of Brassinosteroids in Seedling Shoots of Zea mays L (옥수수 유식물 신초에서 Brassinosteroids의 항상성 조절을 위반 C-26 탈메틸 반응의 중요성)

  • Park, Hyun-Hee;Kim, Young-Soo;Kim, Seong-Ki
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.65-73
    • /
    • 2006
  • Regulatory mechanism for endogenous levels of castasterone (CS) and its biosynthetic precursors in shoots of maize was investigated by the use of enzyme solution prepared from the plant tissue. When [$^2H_0$]- and [$^2H_6$]-CS was used as substrates, [$^2H_0$]-26-norCS and [$^2H_3$]-28-norCS were identified as products, indicating that [$^2H_0$]- and [$^2H_6$]-CS are differently metabolized into [$^2H_0$]-26-norCS and [$^2H_3$]-28-norCS by C-26 and C-28 demethylation, respectively. This suggests that both C-26 and C-28 demethylation can be involved in CS catabolism. In fact that C-28 demethylation only occurred when isotope labeled substrate was used, however, C-26 demethylation is thought be a natural reaction occurred in the maize shoots. When 6-deoxoteasterone (6-deoxoTE) was used, 6-deoxo-26-norTE and 3-dehydro-6-deoxo-26-norTE as well as 6-deoxo-3-dehydroTE and 6-deoxotyphasterol (6-deoxoTY) were identified as enzyme products. When 6-deoxoTY was added, 6-deoxo-26-norTY as well as 6-deoxo-3-dehydroTE and 6-deoxoTE was identified as products. These indicate that C-26 demethylation of 6-deoxoTE, 6-deoxo-3-dehydroTE and 6-deoxoTY as well as a reversible C-3 epimerization from 6-deoxoTE to 6-deoxoTY intermediated by 6-deoxo-3-dehydroTE are operative in the maize shoots, demonstrating that endogenous levels of biosynthetic precursors of CS are also controlled by C-26 demethylation. Therefore, it is thought that C-26 demethylation is an important and a common deactivation process which functions to maintain steady state levels of endogenous brassinosteroids in the maize shoots.