Browse > Article
http://dx.doi.org/10.9787/KJBS.2018.50.4.351

Flavonoid Metabolic Engineering for Modification of Flower Color in Chrysanthemum  

Kim, Da-Hye (National Institute of Agricultural Sciences, Rural Development Administration)
Park, Sangkyu (National Institute of Agricultural Sciences, Rural Development Administration)
Park, Bo-Ra (National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Jong-Yeol (National Institute of Agricultural Sciences, Rural Development Administration)
Lim, Sun-Hyung (National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Korean Journal of Breeding Science / v.50, no.4, 2018 , pp. 351-363 More about this Journal
Abstract
In ornamental crops, the color and shape of flowers are one of the important traits. Generally, flower colors are determined by accumulating pigments such as carotenoids, flavonoids, and betalains. Among them, flavonoids are responsible for broad ranges of colors. Chrysanthemums are one of the most popular ornamental crops in the world, and there have been many efforts to change their flower color. In chrysanthemum flowers, cyanidin-based anthocyanin confers pink or red color, whereas terpenoid-based carotenoids are mainly responsible for yellow and green colors. However, blue colored chrysanthemums do not occur in nature. To date, there have been attempts to obtain blue or violet-colored chrysanthemum flowers through the introduction of a novel gene for accumulating delphinidin-based anthocyanins, while other studies have reported changing endogenous metabolites through the reconstruction of flavonoid biosynthesis. Since various transcription factors are involved in the regulation of flavonoid biosynthesis, it is important to understand not only the structural genes, but also the transcription factors required for the modification of flavonoid-based flower color. Therefore, in this paper, we describe the flavonoid biosynthetic pathway and its regulation, and review previous studies on the change in flower color through modification of flavonoid biosynthesis. This effort could be an important milestone in successfully achieving the modification of chrysanthemum flower color by means of plant biotechnology.
Keywords
Anthocyanin; Chrysanthemum; Flavonoid; Flower color; Metabolic engineering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Morita Y, Hoshino A, Kikuchi Y, Okuhara H, Ono E, Tanaka Y, Fukui Y, Saito N, Nitasaka E, Noguchi H. 2005. Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose: anthocyanidin 3-O-glucoside-2''-O-glucosyltransferase, due to 4-bp insertions in the gene. Plant J 42: 353-363.   DOI
2 Mugford ST, Milkowski C. 2012. Serine carboxypeptidase-like acyltransferases from plants. Methods in Enzymology. Elsevier 516: 279-297.
3 Nakayama T, Suzuki H, Nishino T. 2003. Anthocyanin acyltransferases: Specificities, mechanism, phylogenetics, and applications. J Mol Catal B Enzymatic 23: 117-132.   DOI
4 Noda N, Aida R, Kishimoto S, Ishiguro K, Fukuchi-Mizutani M, Tanaka Y, Ohmiya A. 2013. Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins. Plant Cell Physiol 54: 1684-1695.   DOI
5 Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y, Aida R. 2017. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Sci Adv 3: e1602785.   DOI
6 Noel JP, Dixon RA, Pichersky E, Zubieta C, Ferrer JL. 2003. Structural, functional, and evolutionary basis for methylation of plant small molecules. Recent Advances in Phytochemistry. Elsevier 37: 37-58.
7 Nozaki K, Takamura T, Fukai S. 2006. Effects of high temperature on flower colour and anthocyanin content in pink flower genotypes of greenhouse chrysanthemum (Chrysanthemum morifolium Ramat.). J Hortic Sci Biotechnol 81: 728-734.   DOI
8 Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford CM, Bowles DJ, Davies GJ. 2006. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25: 1396-1405.   DOI
9 Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M. 2005. Plant biochemistry: Anthocyanin biosynthesis in roses. Nature 435: 757.   DOI
10 Ohmiya A. 2018. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers. Breed Sci 68: 119-127.   DOI
11 Ohno S, Hosokawa M, Hoshino A, Kitamura Y, Morita Y, Park KI, Nakashima A, Deguchi A, Tatsuzawa F, Doi M. 2011. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). J Exp Bot 62: 5105-5116.   DOI
12 Aharoni A, De Vos CHR, Wein M, Sun Z, Greco R, Kroon A, Mol JNM, O'connell AP. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28: 319-332.   DOI
13 Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26: 962-980.   DOI
14 Andersen OM, Markham KR. 2006. Flavonoid-protein interactions. In: Flavonoids chemistry, biochemistry and applications. CRC Press. pp. 464-522.
15 Anderson NO. 2006. Chrysanthemum. In: Flower breeding and genetics: Issues, challenges and opportunities for the 21st century. Springer. pp. 389-437.
16 Liu XF, Xiang LL, Yin XR, Grierson D, Li F, Chen KS. 2015. The identification of a MYB transcription factor controlling anthocyanin biosynthesis regulation in Chrysanthemum flowers. Sci Hortic 194: 278-285.   DOI
17 Luo J, Nishiyama Y, Fuell C, Taguchi G, Elliott K, Hill L, Tanaka Y, Kitayama M, Yamazaki M, Bailey P. 2007. Convergent evolution in the BAHD family of acyl transferases: Identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Plant J 50: 678-695.   DOI
18 Maier A, Hoecker U. 2015. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signal Behav 10: e970440.   DOI
19 Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig JF, Hülskamp M, Hoecker, U. 2013. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74: 638-651.   DOI
20 Matsui K, Umemura Y, Ohme-Takagi M. 2008. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55: 954-967.   DOI
21 Mazza G, Brouillard R. 1987. Recent developments in the stabilization of anthocyanins in food products. Food Chem 25: 207-225.
22 Milkowski C, Strack D. 2004. Serine carboxypeptidase-like acyltransferases. Phytochemistry 65: 517-524.   DOI
23 Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2017. Status of ornamental crops. http://www.mafra.go.kr/
24 Mol J, Grotewold E, Koes R. 1998. How genes paint flowers and seeds. Trends Plant Sci 3: 212-217.   DOI
25 Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama T, Tanaka T, Kusumi T, Tanaka Y. 2006. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Natl Acad Sci USA 103: 11075-11080.   DOI
26 Park CH, Chae SC, Park SY, Kim JK, Kim YJ, Chung SO, Arasu MV, Al-Dhabi NA, Park SU. 2015. Anthocyanin and carotenoid contents in different cultivars of chrysanthemum (Dendranthema grandiflorum Ramat.) flower. Molecules 20: 11090-11102.   DOI
27 Polturak G, Grossman N, Vela-Corcia D, Dong Y, Nudel A, Pliner M, Levy M, Rogachev I, Aharoni A. 2017. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proc Natl Acad Sci USA 114: 9062-9067.   DOI
28 Quattrocchio F, Baudry A, Lepiniec L, Grotewold E. 2006. The regulation of flavonoid biosynthesis. In: The science of flavonoids. Springer. pp. 97-122.
29 Schwarz-Sommer Z, Davies B, Hudson A. 2003. An everlasting pioneer: the story of Antirrhinum research. Nat Rev Genet 4: 655.
30 St-Pierre B, De Luca V. 2000. Origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Recent Adv Phytochem 34: 285-315.
31 Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF. 2016. Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol Adv 34: 1073-1090.   DOI
32 Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A, Gershenzon J, Grima-Pettenati J, Seguin A, MacKay J. 2010. Subgroup 4 R2R3-MYBs in conifer trees: Gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. J Exp Bot 61: 3847-3864.   DOI
33 Ben Zvi MM, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A. 2012. PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol 195: 335-345.   DOI
34 Berman J, Sheng Y, Gomez LG, Veiga T, Ni X, Farre G, Capell T, Guitián J, Guitian P, Sandmann G. 2016. Red anthocyanins and yellow carotenoids form the color of orange-flower gentian (Gentiana lutea L. var. aurantiaca). PLOS ONE 11: e0162410.   DOI
35 Bontpart T, Cheynier V, Ageorges A, Terrier N. 2015. BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds. New Phytol 208: 695-707.   DOI
36 Brugliera F, Barri-Rewell G, Holton TA, Mason JG. 1999. Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J 19: 441-451.   DOI
37 Brugliera F, Tao GQ, Tems U, Kalc G, Mouradova E, Price K, Stevenson K, Nakamura N, Stacey I, Katsumoto Y. 2013. Violet/blue chrysanthemums-metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol 54: 1696-1710.   DOI
38 Sung SY, Kim SH, Velusamy V, Lee YM, Ha BK, Kim JB, Kang SY, Kim HG, Kim DS. 2013. Comparative gene expression analysis in a highly anthocyanin pigmented mutant of colorless chrysanthemum. Mol Biol Rep 40: 5177-5189.   DOI
39 Chen SM, Li CH, Zhu XR, Deng YM, Sun W, Wang LS, Chen FD, Zhang Z. 2012. The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. Biol Plant 56: 458-464.   DOI
40 Dahlbender B, Strack D. 1984. Nitrogen nutrition and the accumulation of free and sinapoyl-bound malic acid in Raphanus sativus cotyledons. Planta 161: 142-147.   DOI
41 Davies KM. 2008. Modifying anthocyanin production in flowers. In: Anthocyanins biosynthesis functions, and applications. Springer. pp. 49-80.
42 Dowrick GJ. 1953. The chromosomes of chrysanthemum, II: garden varieties. Heredity 7: 59-72.   DOI
43 Du H, Wu J, Ji KX, Zeng QY, Bhuiya MW, Su S, Shu QY, Ren HX, Liu ZA, Wang LS. 2015. Methylation mediated by an anthocyanin, O-methyltransferase, is involved in purple flower coloration in Paeonia. J Exp Bot 66: 6563-6577.   DOI
44 Dubos C, Le Gourrierec J , Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L. 2008. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55: 940-953.   DOI
45 Tanaka Y, Brugliera F, Chandler S. 2009. Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10: 5350-5369.   DOI
46 Tsuda S, Fukui Y, Nakamura N, Katsumoto Y, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Ohira K, Ueyama Y, Ohkawa H, Holton TA. 2004. Flower color modification of Petunia hybrida commercial varieties by metabolic engineering. Plant Biotechnol 21: 377-386.   DOI
47 Unligil UM, Rini JM. 2000. Glycosyltransferase structure and mechanism. Curr Opin Struct Biol 10: 510-517.   DOI
48 Unno H, Ichimaida F, Suzuki H, Takahashi S, Tanaka Y, Saito A, Nishino T, Kusunoki M, Nakayama T. 2007. Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J Biol Chem 282: 15812-15822.   DOI
49 Wang X. 2009. Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett 583: 3303-3309.   DOI
50 Watanabe K, Kobayashi A, Endo M, Sage-ono K, Toki S, Ono M. 2017. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Sci Rep 7: 10028.   DOI
51 Xiang LL, Liu XF, Li X, Yin XR, Grierson D, Li F, Chen KS. 2015. A novel bHLH transcription factor involved in regulating anthocyanin biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.). PLOS ONE 10: e0143892.   DOI
52 Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20: 176-185.   DOI
53 Ford CM, Boss PK, Hoj PB. 1998. Cloning and characterization of Vitis vinifera UDP-Glucose: flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize bronze-1 Locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273: 9224-9233.   DOI
54 Gachon CM, Langlois-Meurinne M, Saindrenan P. 2005. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10: 542-549.   DOI
55 Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23: 1512-1522.   DOI
56 Gross GG. 1983. Synthesis of mono-, di- and trigalloyl-${\beta}$-D-glucose by ${\beta}$-glucogallin-dependent galloyltransferases from oak leaves. Z Naturforsch 38: 519-523.   DOI
57 Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57: 761-780.   DOI
58 Hanks G. 2015. A review of production statistics for the cut flower and foliage sector 2015 (Part of AHDB Horticulture funded project PO BOF 002a). The National Cut Flower Centre, AHDB Horticulture: 102.
59 He H, Ke H, Keting H, Qiaoyan X, Silan D. 2013. Flower colour modification of chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3'5'H gene. PLOS ONE 8: e74395.   DOI
60 Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JG, Lu CY, Farcy E, Stevenson TW, Cornish EC. 1993. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366: 276-279.   DOI
61 Hong Y, Tang X, Huang H, Zhang Y, Dai S. 2015. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. BMC Genomics 16: 202.   DOI
62 Hugueney P, Provenzano S, Verries C, Ferrandino A, Meudec E, Batelli G, Merdinoglu D, Cheynier V, Schubert A, Ageorges A. 2009. A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant Physiol 150: 2057-2070.   DOI
63 Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K. 2010. Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol 51: 463-474.   DOI
64 Yamazaki M, Yamagishi E, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Kusumi T, Yamaguchi M, Saito K. 2002. Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol Biol 48: 401-411.   DOI
65 Ye ZH, Kneusel RE, Matern U, Varner JE. 1994. An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6: 1427-1439.
66 Zhang Y, Butelli E, Martin C. 2014. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol 19: 81-90.   DOI
67 Ibrahim RK, Bruneau A, Bantignies B. 1998. Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol Biol 36: 1-10.   DOI
68 Jadhav SKR, Patel KA, Dholakia BB, Khan BM. 2012. Structural characterization of a flavonoid glycosyltransferase from Withania somnifera. Bioinformation 8: 943.   DOI
69 Jones P, Messner B, Nakajima JI, Schaffner AR, Saito K. 2003. UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278: 43910-43918.   DOI
70 Kadomura-Ishikawa Y, Miyawaki K, Takahashi A, Noji S. 2015. RNAi-mediated silencing and overexpression of the FaMYB1 gene and its effect on anthocyanin accumulation in strawberry fruit. Biol Plant 59: 677-685.   DOI
71 Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A. 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48: 1589-1600.   DOI
72 Kim DH, Park SK, Lee JY, Ha SH, Lim SH. 2018. Enhancing flower color through simultaneous expression of the B-peru and mPAP1 transcription factors under control of a flower-specific promoter. Int J Mol Sci 19: 309.   DOI
73 Kim S, Hwang G, Lee S, Zhu JY, Paik I, Nguyen TT, Kim J, Oh E. 2017. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5. Front Plant Sci 8: 1787.   DOI
74 Kojima M, Uritani I. 1972. Elucidation of the structure of a possible intermediate in chlorogenic acid biosynthesis in sweet potato root tissue. Plant Cell Physiol 13: 1075-1084.
75 Kondo T, Kawai T, Tamura H, Goto T. 1987. Structure determination of heavenly blue anthocyanin, a complex monomeric anthocyanin from the morning glory ipomea tricolor, by means of the negative NOE method. Tetrahedron Lett 28: 2273-2276.   DOI
76 Kroon J, Souer E, De Graaff A, Xue Y, Mol J, Koes R. 1994. Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: Characterization of insertion sequences in two mutant alleles. Plant J 5: 69-80.   DOI
77 Lam KC, Ibrahim RK, Behdad B, Dayanandan S. 2007. Structure, function, and evolution of plant O-methyltransferases. Genome 50: 1001-1013.   DOI
78 Lee YJ, Kim BG, Chong Y, Lim Y, Ahn JH. 2008. Cation dependent O-methyltransferases from rice. Planta 227: 641-647.   DOI
79 Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M. 2006. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57: 405-430.   DOI
80 Lim SH, You MK, Kim DH, Kim JK, Lee JY, Ha SH. 2016. RNAi-mediated suppression of dihydroflavonol 4-reductase in tobacco allows fine-tuning of flower color and flux through the flavonoid biosynthetic pathway. Plant Physiol Biochem 109: 482-490.   DOI
81 Liu X, Lin C, Ma X, Tan Y, Wang J, Zeng M. 2018. Functional characterization of a flavonoid glycosyltransferase in sweet orange (Citrus sinensis). Front Plant Sci 9: 166.   DOI
82 Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10: 236-242.   DOI