Browse > Article

Increased Production of Amino Acids in an Escherichia coli rpoS Mutant  

Jung, Il-Lae (Department of Radiation Biology, Korea Atomic Energy Research Institute)
Kim, In-Gyu (Department of Radiation Biology, Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Microbiology / v.45, no.3, 2009 , pp. 263-267 More about this Journal
Abstract
An RpoS factor is a transcriptional regulator which participates in numerous biological processes. In this work, we investigated the transcriptional regulation of proBA and proC composing proline biosynthetic pathway in Escherichia coli. While the proBA and proC genes were greatly induced in an exponential growth phase, they were dramatically repressed in a stationary growth phase in the wild type E. coli. Unlike the wild type E. coli, the proBA and proC genes were not repressed even in the stationary growth phase in its isogenic rpoS mutant. These results suggest that the RpoS factor acts as a transcriptional repressor of proBA and proC genes. The production of threonine, methionine, lysine, and arginine in the rpoS mutant were also increased by more than two times compared to its parental wild type, suggesting that the mutant is able to be used as an useful host strain for the amino acid overproduction.
Keywords
amino acids; E. coli; proline; rpoS mutant;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Bloom, F., C.J. Smith, J. Jessee, B. Veiileux, and A.H. Deutch. 1983. The use of genetically engineered strains of Escherichia coli for the overproduction of free amino acids: proline as a model system, pp. 383-394. In Advances in Gene Technology, Academic Press, Orlando, Fla., USA
2 Gaudu, P., S. Dubrac, and D. Touati. 2000. Activation of SoxR by overproduction of desulfoferrodoxin: multiple ways to induce the soxRS regulon. J. Bacteriol. 182, 1761-1763   DOI   ScienceOn
3 Hengge-Aronis, R. 2002. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66, 373-395   DOI   ScienceOn
4 Jung, I.L. and I.G. Kim. 2003. Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. Biochem. Biophys. Res. Commun. 301, 915-922   DOI   ScienceOn
5 Jung, I.L., S.K. Kim, and I.G. Kim. 2006. The RpoS-mediated regulation of isocitrate dehydrogenase gene expression in Escherichia coli. J. Curr. Microbiol. 52, 21-26   DOI   ScienceOn
6 Leuchtenberger, W., K. Huthmacher, and K. Drauz. 2008. Biotechnoligical production of amino acids and derivatived: current status and prospects. Appl. Microbiol. Biotechnol. 69, 1-8   DOI   ScienceOn
7 Vogel, H.J. and B.D. Davis. 1952. Glutamic $\gamma$-semialdehyde and $\Delta^1$-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. J. Am. Chem. Soc. 74, 109-102   DOI
8 Lee, S.Y., H.U. Kim, J.H. Park, J.M. Park, and T.Y. Kim. 2009. Metabolic engineering of microorganisms: general strategies and drug production. Drug Discov. Today 14, 78-88   DOI   ScienceOn
9 Pharkya, P., A.P. Burgard, and C.D. Maranas. 2004. OptStrain: a computational framework for redesign of microbial production systems. Genome Res. 14, 2367-2376   DOI   ScienceOn
10 Schellhorn, H.E., J.P. Audia, L.I. Wei, and L. Chang. 1998. Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. J. Bacteriol. 180, 6283-6291   PUBMED   ScienceOn
11 Sambrook, J. and D.W. Russell. 2001. Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA
12 Burgard, A.P., P. Pharkya, and C.D. Maranas. 2003. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647-657   DOI   ScienceOn
13 Fong, S.S., A.P. Burgard, C.D. Herring, E.M. Knight, F.R. Blattner, C.D. Maranas, and B.O. Palsson. 2005. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91, 643-648   DOI   ScienceOn
14 임번삼. 2003. 아미노산 생산균주의 개량. KISTI 기술동향 보고서
15 Csonka, L.N. 1981. Proline overproduction results in enhanced osmotolerance in Salmonella typhimurium. Mol. Gen. Genet. 182, 82-86   DOI   ScienceOn
16 Lee, K.H., J.H. Park, T.Y. Kim, H.U. Kim, and S.Y. Lee. 2007. Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol. 3, 1-8   DOI   PUBMED   ScienceOn
17 Kim, T.Y., H.U. Kim, and S.Y. Lee. 2009. Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metab. Eng. doi:10.1016/j.ymben.2009. 05.004 [in press]   DOI   ScienceOn
18 Becker, G. and R. Hengge-Aronis. 2001. What makes an Escherichia coli promoter sigma(S) dependent? Role of the -13/-14 nucleotide promoter positions and region 2.5 of sigma(S). Mol. Microbiol. 39, 1153-1165   DOI   ScienceOn
19 Condamine, H. 1971. Sur la regulation de la production de proline chez E. coli K12. Ann. Inst. Pasteur 120, 126-143
20 Hengge-Aronis, R. 1996. Regulation of gene expression during entry into stationary phase, pp. 1497-1512. In Escherichia coli and Salmonella: 2nd ed. ASM Press, Washington, D.C., USA
21 Bachmann, B.J. 1990. Linkage map of Escherichia coli K-12, 8th ed. Microbiol. Rev. 54, 130-197   PUBMED   ScienceOn
22 Loewen, P.C., B. Hu, J. Strutinsky, and R. Sparling. 1998. Regulation in the rpoS regulon of Escherichia coli. Can. J. Microbiol. 44, 707-717   DOI   ScienceOn
23 Segr, D., D. Vitkup, and G.M. Church. 2002. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112-15117   DOI   ScienceOn
24 Jung, I.L. and I.G. Kim. 2003. Polyamines and glutamate decarboxylase- based acid resistance in Escherichia coli. J. Biol. Chem. 278, 22846-22852   DOI   ScienceOn