• 제목/요약/키워드: biosynthesis gene cluster

검색결과 86건 처리시간 0.022초

Genetic Characterization of the Escherichia coli O66 Antigen and Functional Identification of its wzy Gene

  • Cheng, Jiansong;Liu, Bin;Bastin David A.;Han, Weiqing;Wang, Lei;Feng Lu
    • Journal of Microbiology
    • /
    • 제45권1호
    • /
    • pp.69-74
    • /
    • 2007
  • Escherichia coli is a clonal species, and occurs as both commensal and pathogenic strains, which are normally classified on the basis of their O, H, and K antigens. The O-antigen (O-specific polysaccharide), which consists of a series of oligosaccharide (O-unit) repeats, contributes major antigenic variability to the cell surface. The O-antigen gene cluster of E. coli O66 was sequenced in this study. The genes putatively responsible for the biosynthesis of dTDP-6-deoxy-L-talose and GDP-mannose, as well as those responsible for the transfer of sugars and for O-unit processing were identified based on their homology. The function of the wzy gene was confirmed by the results of a mutation test. Genes specific for E. coli O66 were identified via PCR screening against representatives of 186 E. coli and Shigella O type strains. The comparison of intergenic sequences located between galF and the O-antigen gene cluster in a range of E. coli and Shigella showed that this region may perform an important function in the homologous recombination of the O-antigen gene clusters.

Isolation and Characterization of Kasugamycin Biosynthetic Genes from Streptomyces kasugaensis KACC 20262

  • JO YOU-YOUNG;LIU JING;JIN YING-YU;YANG YOUNG-YELL;SUH JOO-WON
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.491-496
    • /
    • 2005
  • The biosynthetic gene cluster for the aminoglycoside antibiotic kasugamycin was isolated and characterized from the kasugamycin producing strain, Streptomyces kasugaensis KACC 20262. By screening a fosmid library using kasA, the gene encoding aminotransferase, we isolated a 22 kb DNA fragment. The fragment contained seventeen complete open reading frames (ORFs); one of these ORFs, kasD, was identified as the gene for dNDP-glucose 4,6-dehydratase, which catalyzes the conversion of dNDP-glucose to 4-keto-6-deoxy-dNDP-glucose. The enzyme showed a broad spectrum of substrate specificity. In addition, ksR was overexpressed in E. coli BL21 and proved to be a self-resistance gene against kasugamycin. These findings suggest that the isolated gene cluster is highly likely responsible for the biosynthesis of kasugamycin.

Identification of Three Positive Regulators in the Geldanamycin PKS Gene Cluster of Streptomyces hygroscopicus JCM4427

  • Kim, Won-Cheol;Lee, Jung-Joon;Paik, Sang-Gi;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권11호
    • /
    • pp.1484-1490
    • /
    • 2010
  • In the Streptomyces hygroscopicus JCM4427 geldanamycin biosynthetic gene cluster, five putative regulatory genes were identified by protein homology searching. Among those genes, gel14, gel17, and gel19 are located downstream of polyketide synthase genes. Gel14 and Gel17 are members of the LAL family of transcriptional regulators, including an ATP/GTP-binding domain at the N-terminus and a DNA-binding helix-turn-helix domain at the C-terminus. Gel19 is a member of the TetR family of transcriptional regulators, which generally act to repress transcription. To verify the biological significance of the putative regulators in geldanamycin production, they were individually characterized by gene disruption, genetic complementation, and transcriptional analyses. All three genes were confirmed as positive regulators of geldanamycin production. Specifically, Gel17 and Gel19 are required for gel14 as well as gelA gene expression.

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

Characterization of D-Glucose ${\alpha}$-1-Phosphate Uridylyltransferase (VldB) and Glucokinase (VIdC) Involved in Validamycin Biosynthesis of Streptomyces hygroscopicus var. limoneus KCCM 11405

  • Seo Myung-Ji;Im Eun-Mi;Singh Deepak;Rajkarnikar Arishma;Kwon Hyung-Jin;Hyun Chang-Gu;Suh Joo-Won;Pyun Yu-Ryang;Kim Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1311-1315
    • /
    • 2006
  • Aminocyclitol antibiotic validamycin A, a prime control agent for sheath blight disease of rice plants, is biosynthesized by Streptomyces hygroscopicus var. limoneus. Within the validamycin biosynthetic gene cluster, vldBC forms an operon of vldABC with vidA, the gene encoding 2-epi-5-epi-valiolone synthase. Biochemical studies, employing the recombinant proteins from Escherichia coli, established VldB and VldC as D-glucose $\alpha$-1-phosphate uridylyltransferase and glucokinase, respectively. This finding substantiates that the validamycin biosynthetic gene cluster harbors genes encoding the enzymes for UDP-glucose formation from glucose. Therefore, we propose that validamycin biosynthesis employs its own catalysts to generate UDP-glucose, but not depending on the primary metabolism.

Salmonella typhimurium LPS Confers Its Resistance to Antibacterial Agents of Baicalin of Scutellaria baicalensis George and Novobiocin: Complementation of the rfaE Gene Required for ADP-L-glycero-D-manno-heptose Biosynthesis of Lipopolysaccharide

  • Chung, Tae-Wook;Jin, Un-Ho;Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.564-570
    • /
    • 2003
  • The antibacterial mechanism of enterobacter Salmonella typhimurium was studied. The rfa (Waa) gene cluster of S. typhimurium encodes the core oligosaccharide biosynthesis of lipopolysaccharide (LPS). Among the rfa gene cluster, we recently cloned the rfaE gene, which is involved in ADP-L-glycero-D-manno-heptose biosynthesis. The rfaE mutant synthesizes heptose-deficient LPS, which consists of only lipid A and 3-deoxy-D-manno-octulosonic acid (KDO), thus making an incomplete LPS and a rough phenotype mutant. S. typhimurium deep-rough mutants with the heptose region of the inner core show a reduced growth rate, sensitivity to high temperature, and hypersensitivity to hydrophobic antibiotics such as baicalin isolated from the medicinal herb of Scutellaria baicalensis Georgi. Thus, in this study, the cloned rfaE gene was added to the S. typhimurium rfaE mutant strain SL1102 (rfaE543), which makes heptose-deficient LPS and has a deep-rough phenotype. The complementation created a smooth phenotype in the SL1102 strain. The sensitivity of SL1102 to bacteriophages was also recovered to that of wild-type strain, indicating that LPS is used as the receptor for bacteriophage infection. The permeability barrier of SL1102 to hydrophobic antibiotics such as novobiocin and baicalin was restored to that of the wild-type, suggesting that antibiotic resistance of the wild-type strain is highly correlated with their LPS. Through an agar diffusion assay, the growth-inhibition activity of baicalin was fully observed in the mutant SL1102 strain. However, only a half of the inhibitory activity was detected in the rfaE complemented SL1102 strain. Furthermore, the LPS produced by the rfaE-complemented SL1102 strain was indistinguishable from LPS biosynthesis of smooth strains.

Cloning and Analysis of a Type II Polyketide Synthase Gene Cluster from Streptomyces toxytricini NRRL 15,443

  • Yoo An-Na;Demirev Atanas V.;Lee, Ji-Seon;Kim, Sang-Dal;Nam Doo-Hyun
    • Journal of Microbiology
    • /
    • 제44권6호
    • /
    • pp.649-654
    • /
    • 2006
  • A standard type II polyketide synthase (PKS) gene cluster was isolated while attempting to clone the biosynthetic gene for lipstatin from Streptomyces toxytricini NRRL 15,443. This result was observed using a Southern blot of a PstI-digested S. toxytricini chromosomal DNA library with a 444 bp amplified probe of a ketosynthase (KS) gene fragment. Four open reading frames [thioesterase (TE), $\beta$-ketoacyl systhase (KAS), chain length factor (CLF), and acyl carrier protein (ACP)], were identified through the nucleotide sequence determination and analysis of a 4.5 kb cloned DNA fragment. In order to confirm the involvement of a cloned gene in lipstatin biosynthesis, a gene disruption experiment for the KS gene was performed. However, the resulting gene disruptant did not show any significant difference in lipstatin production when compared to wild-type S. toxytricini. This result suggests that lipstatin may not be synthesized by a type II PKS.

Characterization of Geranylgeranyl Pyrophosphate Synthase from the Marine Bacterium, Paracoccus haeundaensis

  • Seo, Yong-Bae;Lee, Jae-Hyung;Kim, Young-Tae
    • Fisheries and Aquatic Sciences
    • /
    • 제12권1호
    • /
    • pp.54-59
    • /
    • 2009
  • Carotenoids such as $\beta$-carotene and astaxanthin are used as food colorants, animal feed supplements and for nutritional and cosmetic purposes. In a previous study, an astaxanthin biosynthesis gene cluster was isolated from the marine bacterium, Paracoccus haeundaensis. Geranylgeranyl pyrophosphate (GGPP) synthase (CrtE), encoded by the ortE gene, catalyzes the formation of GGPP from farnesyl pyrophosphate (FPP), which is an essential enzyme for the biosynthesis of carotenoids in early steps. In order to study the biochemical and enzymatic characteristics of this important enzyme, a large quantity of purified GGPP synthase is required. To overproduce GGPP synthase, the crtE gene was subcloned into a pET-44a(+) expression vector and transformed into the Escherichia coli BL21(DE3) codon plus cell. Transformants harboring the crtE gene were cultured and the crtE gene was over-expressed. The expressed protein was purified to homogeneity by affinity chromatography and applied to study its biochemical properties and molecular characteristics.