• 제목/요약/키워드: biosorption

검색결과 190건 처리시간 0.021초

실리카고정 괭생이모자반에 대한 중금속 Cd(II), Pb(II) 이온의 흡착 특성 (Adsorption Characteristics of the Heavy Metals, Cd(II) and Pb(II) Ions, on the Si-immobilized Sargassum horneri)

  • 박광하;박미아;김영하
    • 분석과학
    • /
    • 제13권3호
    • /
    • pp.368-377
    • /
    • 2000
  • 실리카고정괭생이모자반을 합성하여 중금속 흡착제로 이용하였다. 이 흡착제에 대한 중금속 Cd(II), Pb(II)이온의 최대흡착조건을 알아보고 흡착특성을 연구하였다. 그 결과 산성보다는 알카리성에서 흡착량이 더 크고 Si-고정괭생이모자반에 대한 중금속 Cd(II), Pb(II)이온의 흡착량이 더 큼을 알 수 있었다. 또한 Cd(II) 이온보다 Pb(II) 이온의 흡착량이 더 높음을 알 수 있었다. Cd(II) 및 Pb(II) 이온의 회수율은 괭생이모자반에서 58.0-62.6%, 61.2-64.4%로 나타났고, Si-고정괭생이모자반에서 56.8-92.7%, 37.8-47.9%로 나타났다. Cd(II)이온은 Si-고정괭생이모자반에서의 회수율이 더 높게 나타났으나, Pb(II) 이온은 Si-고정괭생이모자반에서의 회수율이 더 낮게 나타났음을 알 수 있었다.

  • PDF

하천 생태계에서 유기탄소 기질 제거에 조류와 세균의 공생작용이 미치는 영향 (Effect of Bacterial and Algal Symbiotic Reaction on the Removal of Organic Carbon in River Ecosystem)

  • 공석기;도시유끼나까지마
    • 환경위생공학
    • /
    • 제16권3호
    • /
    • pp.22-27
    • /
    • 2001
  • It have been investigated how algal and bacterial symbiotic reaction influences on removal of organic carbon in river ecosystem. And artificial experimentation apparatus was made for algae'and bacteia'culture as lab scale. Investigating and researching minutely the change of concentration of organic carbon substrate and the change of population density of algae'and of bacteria'with this artificial experimentation apparatus, the next results could be obtained. 1. Successful decrease of DOC(dissolved organic carbon) could not be expected unless algal and bacterial biomass floe was nut formed effectively and unless biosorption was not proceeded effectively in the very culture system in which artificial synthetic wastewater was supplied continuously at constant rate. 2. In conditions of culture liquid of 1335 glucnse mg/L(type 1) and of 267 glucose mg:L(type 2), the algal dominant species was always Chlorella vulgaris in both types in which artificial synthetic wastewater were supplied continuously at constant rate and algae population density was around maximum 107 cells/mL. 3. It was around 108 ~ 107 cells/mL that the population density of heterotrophic bacterium. In culture medium systems type 1 and type 2 in which artificial wastewater were supplied continuously at constant rate, the same density appeared initially when using the population density of Escherichia coli w 3110 as indirect indicator. And this density decreased rapidly till the culturing date 35 days were passed away, while this density increased with gentle slope after same date and then the trend of change at type 2 was more severe than one at type 1. 4. When seeing such a change of population density of Escherichia coli w 3110, the growth of heterotrophic bacterium appeared as survival instinct pattern of broader requirement of nutrient at condition of low concentration of organic carbon substrate than condition of high concentration of same substrate.

  • PDF

Geotrichum candidum을 이용한 염색 염료의 색도제거 (Decolorization of Textile Dyes by Geotrichum candidum)

  • 고동욱;이진원;유영제;김의용
    • KSBB Journal
    • /
    • 제15권1호
    • /
    • pp.66-71
    • /
    • 2000
  • Geotrichum candidum (KCTC 6195)를 이용하여 색도제거를 위한 최적조건은 초기 pH 6, $30^{\circ}C$, glucose 농도 30 g/L이었으며 빛은 세포성장과 색도제거에 영향을 주지 않았다. 한편, 세포성장과 색도제거를 위해서는 세포의 성장원(glucose)이 필수적이었다. 염료의 종류에 따라 색도제거량과 속도는 차이가 있지만 분산염료, 산성염료, 반응염료에 대해 색도제거가 고체배치와 액체배치에서 가능했으며 Acid goange 10 염료의 경우 배양 후 120 시간 후에는 초기 100 ppm에서 91%로, 초기 500ppm에서 84%까지 색도제거되는 것을 알 수 있었다. 색도제거에서 Acid red 1: 19.8%, Acid red 88, 73%, Acid orange 10; 12.1%, Reactive blue 19; 14.6%가 흡착으로 제거되었다. 이로서 효소에 의한 색도제거뿐만 아니라 흡착에 의해 색도제거됨을 알 수 있었다. 2일간 배양하고 glucose를 첨가하여 1일간 추가 배양한 경우 97%까지 색도제거 되었다.

  • PDF

Effect of Nutrients on the Production of Extracellular Enzymes for Decolorization of Reactive Blue 19 and Reactive Black 5

  • Lee Yu-Ri;Park Chul-Hwan;Lee Byung-Hwan;Han Eun-Jung;Kim Tak-Hyun;Lee Jin-Won;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.226-231
    • /
    • 2006
  • Several white-rot fungi are able to produce extracellular lignin-degrading enzymes such as manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase. In order to enhance the production of laccase and MnP using Trametes versicolor KCTC 16781 in suspension culture, the effects of major medium ingredients, such as carbon and nitrogen sources, on the production of the enzymes were investigated. The decolorization mechanism in terms of biodegradation and biosorption was also investigated. Among the carbon sources used, glucose showed the highest potential for the production of laccase and MnP. Ammonium tartrate was a good nitrogen source for the enzyme production. No significant difference in the laccase production was observed, when glucose concentration was varied between 5 g/l and 30 g/l. As the concentration of nitrogen source increased, a lower MnP activity was observed. The optimal C/N ratio was 25 for the production of laccase and MnP. When the concentrations of glucose and ammonium tartrate were simultaneously increased, the laccase and MnP activities increased dramatically. The maximum laccase and MnP activities were 33.7 U/ml at 72 h and 475 U/ml at 96 h, respectively, in the optimal condition. In this condition, over 90% decolorization efficiency was observed.

괭생이 모자반에 의한 수중 중금속 Cd(II), Pb(II) 이온의 제거 (Removal of Heavy Metals, Cd(II) and Pb(II) Ions in water by Sargassum Herneri)

  • 박광하;박미아;장훈;김은경;김영하
    • 분석과학
    • /
    • 제12권3호
    • /
    • pp.196-202
    • /
    • 1999
  • 갈조류인 Sargassum horneri를 중금속 흡착제로 사용하여 중금속 Cd(II) 및 Pb(II)이온을 제거하였다. Sargassum horneri는 동해안에서 채취하였고, 풍건 건조시켜 40~60 mesh의 입자 크기로 흡착제를 만들어 사용하였다. batch법은 진탕 시간에 따른 흡착량을 측정함으로써 흡착속도를 조사하였고, column법은 해조 분말을 충진 시킨후 일정농도의 중금속용액을 1 mL/min의 속도로 흘려보내면서 흡착시키고 흡착량을 알아 보았다. 중금석 흡착에 미치는 pH의 영향은 batch법과 column법 모두, pH 10.5>7.0>3.5순으로 나타났다. Pb(II)이온이 Cd(II)이온보다 높은 흡착량을 보였다. 특히 batch법에서는 모든 pH의 조건하에서 5분이내에 최대 흡착량에 도달하였다. 회수율은 batch법에 의해 흡착된 중금속의 회수율이 column법에 의해 흡착된 중금속의 회수율 보다 조금 높게 나타났다.

  • PDF

The Heavy Metal Tolerant Soil Bacterium Achromobacter sp. AO22 Contains a Unique Copper Homeostasis Locus and Two mer Operons

  • Ng, Shee Ping;Palombo, Enzo A.;Bhave, Mrinal
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권6호
    • /
    • pp.742-753
    • /
    • 2012
  • Copper-containing compounds are introduced into the environment through agricultural chemicals, mining, and metal industries and cause severe detrimental effects on ecosystems. Certain microorganisms exposed to these stressors exhibit molecular mechanisms to maintain intracellular copper homeostasis and avoid toxicity. We have previously reported that the soil bacterial isolate Achromobacter sp. AO22 is multi-heavy metal tolerant and exhibits a mer operon associated with a Tn21 type transposon. The present study reports that AO22 also hosts a unique cop locus encoding copper homeostasis determinants. The putative cop genes were amplified from the strain AO22 using degenerate primers based on reported cop and pco sequences, and a constructed 10,552 base pair contig (GenBank Accession No. GU929214). BLAST analyses of the sequence revealed a unique cop locus of 10 complete open reading frames, designated copSRABGOFCDK, with unusual separation of copCD from copAB. The promoter areas exhibit two putative cop boxes, and copRS appear to be transcribed divergently from other genes. The putative protein CopA may be a copper oxidase involved in export to the periplasm, CopB is likely extracytoplasmic, CopC may be periplasmic, CopD is cytoplasmic/inner membrane, CopF is a P-type ATPase, and CopG, CopO, and CopK are likely copper chaperones. CopA, B, C, and D exhibit several potential copper ligands and CopS and CopR exhibit features of two-component regulatory systems. Sequences flanking indicate the AO22 cop locus may be present within a genomic island. Achromobacter sp. strain AO22 is thus an ideal candidate for understanding copper homeostasis mechanisms and exploiting them for copper biosensor or biosorption systems.

6가 크롬 및 유류 제거를 위한 우모 폐기물의 이용가능성 (Availability of Chicken Feather for Removal of Hexavalent Chromium and Oil)

  • 정진하;이나리;박성보;정성윤;박근태;손홍주
    • 한국환경과학회지
    • /
    • 제21권3호
    • /
    • pp.369-375
    • /
    • 2012
  • We investigated usefulness of chicken feather as bioadsorbent for removal of hexavalent chromium[Cr(VI)] and oil from aqueous solution. Chicken feather was chemically treated with DTPA, EDTA, NaOH and SDS, respectively. Among them, EDTA was the most effective in adsorbing Cr(VI). Cr(VI) uptake by chicken feather was increased with decreasing pH; the highest Cr(VI) uptake was observed at pH 2.0. By increasing Cr(VI) concentration, Cr(VI) uptake was increased, and maximum Cr(VI) uptake was 0.34 mmol/g. Cr(VI) adsorption by chicken feather was well described by Freundlich isotherm than Langmuir isotherm and Freundlich constant(1/n) was 0.476. As the concentration of chicken feather was increased, Cr (VI) removal efficiency was increased but Cr(VI) uptake was decreased. Most of Cr(VI) was adsorbed at early reaction stage(1 h) and adsorption equilibrium was established at 5 h. On the other hand, chicken feather adsorbed effectively oils including bunker-A and bunker-C. In conclusion, our results suggest that chicken feather waste could be used to remove heavy metal and oil; it is a potential candidate for biosorption material.

Preparation of Corncob Grits as a Carrier for Immobilizing Yeast Cells for Ethanol Production

  • Lee, Sang-Eun;Lee, Choon Geun;Kang, Do Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1673-1680
    • /
    • 2012
  • In this study, DEAE-corncobs [delignified corncob grits derivatized with 2-(diethylamino)ethyl chloride hydrochloride ($DEAE{\cdot}HCl$)] were prepared as a carrier to immobilize yeast (Saccharomyces cerevisiae) for ethanol production. The immobilized yeast cell reactor produced ethanol under optimized $DEAE{\cdot}HCl$ derivatization and adsorption conditions between yeast cells and the DEAE-corncobs. When delignified corncob grit (3.0 g) was derivatized with 0.5M $DEAE{\cdot}HCl$, the yeast cell suspension ($OD_{600}$ = 3.0) was adsorbed at >90% of the initial cell $OD_{600}$. This amount of adsorbed yeast cells was estimated to be 5.36 mg-dry cells/g-DEAE corncobs. The $Q_{max}$ (the maximum cell adsorption by the carrier) of the DEAE-corncobs was estimated to be 25.1 (mg/g), based on a Languir model biosorption isotherm experiment. When we conducted a batch culture with medium recycling using the immobilized yeast cells, the yeast cells on DEAE-corncobs produced ethanol gradually, according to glucose consumption, without cells detaching from the DEAE-corncobs. We observed under electron microscopy that the yeast cells grew on the surface and in the holes of the DEAE-corncobs. In a future study, DEAE-corncobs and the immobilized yeast cell reactor system will contribute to bioethanol production from biomass hydrolysates.

밤나무 재활용에 의한 구리 이온의 생물흡착 (Biosorption of Copper Ions by Recycling of Castanea crenata)

  • 최석순
    • 공업화학
    • /
    • 제25권3호
    • /
    • pp.307-311
    • /
    • 2014
  • 본 연구에서는 4종류의 목재 폐기물(밤나무, 소나무, 낙엽송, 아카시아) 중에서 구리 이온 제거 능력이 뛰어난 생물흡착제로서 밤나무를 도출하였으며, 또한, 이 밤나무를 이용하여 수중에 함유된 5, 10, 20, 40 mg/L 구리 이온의 제거 효율에 대하여 고찰하였다. 5 mg/L 구리 이온 제거를 위하여, $43{\sim}63{\mu}m$ 입자 크기의 밤나무 사용이 가장 효과적임을 알 수 있었다. 밤나무 주입 농도를 증가하였을 때, 구리 제거효율이 향상되었다. 또한, 0.8 g/100 mL 밤나무가 30 min 동안 사용되었을 때, 20, 40 mg/L 구리 이온 제거효율은 각각 99, 85% 제거효율을 나타내었다. 그리고 50 mg/L 구리 이온의 제거 능력을 향상시키기 위하여, 밤나무에 1 M 아세트산나트뮴의 화학적 처리가 필요함을 알 수 있었다. 한편, 개질된 밤나무를 재활용하기 위하여 최적의 탈착제로서 93% 구리 탈착 효율을 나타낸 1 M 염산을 선정하였다. 따라서 이러한 실험 결과들은 경제적이고 실용적인 공학 자료로서 구리 제거 공정 개발에 활용될 수 있을 것이다.

Preparation of chitosan, sunflower and nano-iron based core shell and its use in dye removal

  • Turgut, Esra;Alayli, Azize;Nadaroglu, Hayrunnisa
    • Advances in environmental research
    • /
    • 제9권2호
    • /
    • pp.135-150
    • /
    • 2020
  • Many industries, such as textiles, chemical refineries, leather, plastics and paper, use different dyes in various process steps. At the same time, these industrial sectors are responsible for discharging contaminants that are harmful and toxic to humans and microorganisms by introducing synthetic dyes into wastewater. Of these dyes, methylene blue dye, which is classified as basic dyes, is accepted as a model dye. For this reason, methylene blue dye was selected in the study and its removal from the water was studied. In this study, two efficient biosorbents were developed from chitosan and sunflower waste, an agro-industrial waste and modified using iron nanoparticles. The biosorption efficiency was evaluated for methylene blue (MB) dye removal from aqueous solution under various parameters such as treating agent, solution pH, biosorbent dosage, contact time, initial dye concentration and temperature. We investigated the kinetic properties of dye removal from water for Chitosan-Sunflower (CS), Chitosan-Sunflower-Nanoiron (CSN). When the wavelength of MB dye was spectrophotometrically scanned, the maximum absorbance was determined as 660 nm. For the core shell biosorbents we obtained, we found that the optimum time for removal of MB from wastewater was 60 min. The pH of the best pH was determined as 5 in the studied pH. The most suitable temperature for the experiment was determined as 30℃. SEM-EDAX, TEM, XRD, and FTIR techniques were used to characterize biosorbents produced and modified in the experimental stage and to monitor the change of biosorbent after dye removal. The interactions of the paint with the surface used for removal were explained by these techniques. It was calculated that 80% of CS and 88% of CSN removed MB in optimum conditions. Also, the absorption of MB dye onto the surface was investigated by Langmiur and Frendlinch isotherms and it was determined from the results that the removal was more compatible with Langmiur isotherm.