• Title/Summary/Keyword: bioremediation agent

Search Result 20, Processing Time 0.019 seconds

A Study of the Effectiveness of Bioremediation Agents to degrade the spilled oils on waters (미생물제제의 해상유출유 분해 효과에 대한 연구)

  • Lim Jae-Dong;Yun Jong-Hwui;Kim In-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.73-79
    • /
    • 2004
  • When large-scale oil spill happens, it will put the fatal impact on the ecosystem, ultimately harm human being seriously. Accordingly every coastal country invests to improve response technologies, of which oil removal by use of bioremediation agent is taken to be secondary or alternative cleanup method in a specific spilled area In this regards, the author attempts to find out the efficiency and effectiveness of bioremediation agent to oil slick by laboratory experiment as well as the possibility of bioremediation application to future spill accident and gets the some results. In this study, the effectiveness and efficiency of bioremediation agent to oil slick is examined by short-term laboratory test and it is found that bioremediation agent am degrade oils effectively. however, considering the environment c! spill site is quite different from that of lab, the author will carry on the on-scene test of bioremediation for longer period to look into the possibility of biorediation agent as one of oil spill response methods.

  • PDF

미생물제제를 이용한 유류오염지역의 토양정화

  • 심두섭;송현주;박수진;고성환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.360-363
    • /
    • 2003
  • Bioremediation is often used for in situ remediation of petroleum-contaminated site. We studied the microbial degradation of hydrocarbon in an artificially diesel contaminated soil in laboratory microcosm. In control soil, about 30% of the initial TPH was diminished and the degradation of diesel oil was significantly enhanced by the addition of bioremediation agent (70% of TPH reduction).

  • PDF

Biopile을 이용한 유류 오염토양의 복원에 관한 연구

  • 박종천;오재영;정용욱;이우범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.310-314
    • /
    • 2002
  • To investigate the effect of on-site bioremediation in soil that have been contaminated by hydrocarbon fuel spills, petroleum-degrading bacteria isolated from soil around petroleum chemical industry and microbial agents were constructed. We investigated biopiles for on-site bioremediation of soil contaminated (5000 mg per kg) with bunker A fuel in five independent lab-scale experiments. Five biopile units constituting the following treatments: (1) control with no nutrients and microbial agents (2) microbial agent M plus nutrients (3) microbial agent C plus nutrients (4) only microbial agent C (5) control with only nutrients. The results were highly different one another. After 30 days in treatments with optimal condition, total petroleum hydrocarbons were reduced to below 10 mg per kg of soil at the biopile units mixed with microbial agents, but control biopile units show that were reduced from 1,105 to 2,588 mg per kg of soil. Our results show that microbial agents at on-site bioremediation of fuel-contaminated soil is highly effective.

  • PDF

Effects of Bioremediation Products on the Oil Degradability (생물정화용 제품의 유류분해능 비교)

  • 김상진;신수경
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.157-162
    • /
    • 1997
  • Recently the bioremediation technology has been widely used to recover the oil contaminated environments The application of bioremediation agents to oil polluted environments became common and thus many kinds of commercial products were imported into domestic market. In Korea, howcver. the standardization of bioremediation products quality is not yet established and results of efficacy test .ire scarce. In this study five oil spill bioremediation commercial products including microbial inoculants and en'cyme agents are tested for the oil degradation rate. From the results most products shows the strong oil emulsifying phenomena due to the contained chemical oil dispersant and the low oil degradation rate. Product D inhibited the oil degradability of microorganisms even in the natural sea water. From these results it could be concluded that in the near future the laboratory protocol and standardization of products quality for bioremediarion agents should be prepared to activate the effective application of bioremediation technology in Korea.

  • PDF

A Study on Bioremediation of Fish Farm Sediment Using CaO2 by Enhancement of Indigenous Microbial Activity (어류양식장 저질개선을 위한 과산화칼슘 투입에 의한 생태 환경변화 관찰)

  • Cho, Daechul;Bae, Hwan-Jin;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1187-1193
    • /
    • 2012
  • The aim of this research is to enhance the bottom environment of Geoje fish farm that has been severely contaminated. Treatment of microbial agent and/or calcium oxide significantly changed that environment: in ignition loss, either treatment (25% or 21%) showed better than mixed treatment (13.2%). In COD, the oxygen releasing agent or mixed treatment reduced the index by more than 20%. In T-P and T-N, the effects of $CaO_2$ on them were overwhelming (50% or more) meanwhile that of the microbial agent on them was less than 20%. Also, $CaO_2$ influenced on the microbial flora: Desulfobvibrio thermophilus, a sulfate reducing bacterium decreased in number, considering the increase of pH and rise of redox potential. In contrast, Pseudomonas sp., Pseudoalteromonas sp., Pseudomonas aeruginosa were remarkably dominant over other species with mixed treatment as a PCA analysis confirmed it.

The Study for Practical use of Bioremediation Agent in Oil-Contaminated Area (해상유출유 오염지역에서의 미생물처리제 활용 방안 연구)

  • Chung Jin-Won;Yoon Joo-yong;Shin Jae-Rouk;Kim Han-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.3-15
    • /
    • 2003
  • Recently more than 450 incidents of oil spill a year have occurred in nearshore of Korea, which caused unmeasurelable losses in fisheries and severe damage in marine ecosystem. Two approaches remain paramount in any response to marine oil spill : the enhancement of natural dispersion of the oil by using dispersants, and mechanical recovery using booms and skimmers. A technique currently receiving fresh attention is the enhancement of the natural bioremediation of oil through the application of micro-organisms and/or nutrient. Oil, like many natural substances, will biodegrade over a period of time into simple compounds such as carbon dioxide, water and biomass. Bioremediation is the term used to describe a range of processes which can be used to accelerate natural biodegradation. More specifically biostimulation is the application of nutrients, and bioaugremetation or seeding is the addition of microbes specially selected to degrade oil. Bioremediation is an economically attractive method for the clean-up of oil-contaminated area. Bioremediation has been demonstrated to be an effective oil spill countermeasure for use in cobble, sand beach, salt marsh, and mud flat environment.

  • PDF

Column experiment for contaminated coastal sediment bioremediation using biostimulating agent (연안오염저질의 생물정화를 위한 생물활성촉진제의 효능 평가 : 현장 컬럼실험)

  • Woo, Jung-Hui;Song, Young-Chae;Subah, Bakthavachallam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.83-84
    • /
    • 2014
  • This study evaluated the effectiveness of biostimulating agent in contaminated coastal sediment. The study was conducted via column tests in coastal sea wherein two separate columns were employed for two different polymers used and another column for a blank. The biostimulating agent was made by mixing sea sediment with biostimulants viz acetate, nitrate, sulfate. The biostimulating agent was then rolled into balls, dried and coated with either Cellulose Acetate (CA) or Polysulfone (PS) to control the release of the biostimulants. The pH was around 7.6~8 for 4 months while COD, TP and TN were significantly lower in the column containing biostimulating agents. Heavy metal(Fe, Zn, Cd, Cr, Pb, Cu) was converted to stable forms and PS coated biostimulating agent had a high efficiency of heavy metals distribution.

  • PDF

The Study for Performance TestㆍVerification Standard, Form approval procedure(draft) of OSBA (생물정화제제의 성능시험ㆍ검정기준, 형식승인절차(안) 등에 관한 연구)

  • Chung Jin-Won;Yoon Joo-yong;Shin Jae-Rouk;Kim Han-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.16-27
    • /
    • 2003
  • For the last decade, some 400 small and large oil spill accidents have occurred every year. Such accident blow a serious damage to the marine resource and ecosystem, which can't be estimated in terms of economic and environmental losses. The physical/chemical methods used currently may be effective at the initial stage of accidents, but they can't serve to remove the spilled oil completely. Moreover, the dispersant may lead to a secondary contamination detrimental to the lives inhabiting wet lands, beaches and tidal zone. Thus, a new decomposing technology Is required for the environmentally sensitive areas. Bioremediation is the active use of biological techniques to mitigate the consequences of a spill using biological processes and refers both of stimulation of pollutant biodegradation and/or to enhance ecosystem recovery Bioremediation is an economically attractive method for the clean-up of oil-contaminated area. Bioremediation has been demonstrated to be an effective oil spill countermeasure for use in cobble, sand beach, salt marsh, and mud flat environment.

  • PDF

Effectiveness of external agents in polluted sedimentary area

  • Alam, Md. Mahabub;Haque, Md. Niamul;Cho, Daechul;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.52-57
    • /
    • 2016
  • Sediment is a useful natural source but deteriorated continually by anthropogenic and industrial sources. Therefore, it is imperative to search a suitable method for improving or restoring sediment quality. Sediment has been tested to identify the effects of some external agents on a polluted area for 28 days. Chemical analysis and total viable counts (TVC) test have been conducted for 4 days interval to assess their performance. The analyses of chemical oxygen demand (COD), acid volatile sulfide (AVS), total phosphorous (T-P), total nitrogen (T-N) indicate that the chemical agents was more efficient to improve sediment quality whereas the microbial agent was more efficient for nutrient releasing from sediment. Oxygen releasing property of the chemical agent was thought to be providing with more congenial environment for the higher growth of the bacterial community than the direct application of microbial agents.

Effects of pH Control Methods on Removal Efficiency in Electrokinetic Bioremediation of Phenanthrene-contaminated Soil (Phenanthrene-오염토양의 동전기 생물학적 복원에서 pH 조절방법이 제거효율에 미치는 영향)

  • Kim, Sang-Joon;Park, Ji-Yeon;Lee, You-Jin;Yang, Ji-Won
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.181-187
    • /
    • 2006
  • In this study, problems related with pH control in electrokinetic(EK) bioremediation of phenanthrene contaminated soil were observed, and the effects of pH control methods on the removal efficiency were investigated to search a further application strategy. In a preliminary experiment, it was found out by flask cultivation that a certain sulfate concentration was needed to degrade phenanthrene well using Sphingomonas sp. 3Y. However, when $MgSO_4$ was used as sulfate source in EK bioremediation, the bacterial activity reduced seriously due to the abrupt decrease of pHs in soil and bioreactor by the combination of magnesium and hydroxyl ions. When another strong buffering compound was used to control the pH problem, the good maintenance of the bacterial activity and pHs could be observed, but the removal efficiency decreased largely. When a low concentration of $MgSO_4$ was added, the removal efficiency decreased somewhat in spite of the good maintenance of neutral pHs. With the addition of NaOH as a neutralizing agent, the removal efficiency also decreased because of the increase of soil pH. Consequently the selection of electrolyte composition was a very important factor in EK bioremediation and some sulfate sources suitable for both bacterial activity and contaminant degradation should be investigated.