• 제목/요약/키워드: biophysical transformation

검색결과 4건 처리시간 0.023초

Dynamic Quasi-Elastic Light Scattering Measurement of Biological Tissue

  • Youn, Jong-In;Lim, Do-Hyung
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.169-173
    • /
    • 2007
  • During laser irradiation, mechanically deformed cartilage undergoes a temperature dependent phase transformation resulting in accelerated stress relaxation. Clinically, laser-assisted cartilage reshaping may be used to recreate the underlying cartilaginous framework in structures such as ear, larynx, trachea, and nose. Therefore, research and identification of the biophysical transformations in cartilage accompanying laser heating are valuable to identify critical laser dosimetry and phase transformation of cartilage for many clinical applications. quasi-elastic light scattering was investigated using Ho : YAG laser $(\lambda=2.12{\mu}m\;;\;t_p\sim450{\mu}s)$ and Nd:YAG Laser $(\lambda=1.32{\mu}m\;;\;t_p\sim700{\mu}s)$ for heating sources and He : Ne $(\lambda=632.8nm)$ laser, high-power diode pumped laser $(\lambda=532nm)$, and Ti : $Al_2O_3$ femtosecond laser $(\lambda=850nm)$ for light scattering sources. A spectrometer and infrared radiometric sensor were used to monitor the backscattered light spectrum and transient temperature changes from cartilage following laser irradiation. Analysis of the optical, thermal, and quasi-elastic light scattering properties may indicate internal dynamics of proteoglycan movement within the cartilage framework during laser irradiation.

레이저에 의한 연골의 광학적 열적 특성변화 연구 (Optical and Thermal Characteristic Studies of Cartilage by Laser Irradiation)

  • 이연의;윤종인
    • 대한의용생체공학회:의공학회지
    • /
    • 제32권3호
    • /
    • pp.270-277
    • /
    • 2011
  • Laser cartilage reshaping(LCR) is a promising method for reshaping cartilage by using laser irradiation to maintain permanently modifies its shape. However this method has not been fully understood due to the limited scientific researches. The purpose of this study is to analyze optical and thermal characteristics of cartilage during laser irradiation. After analyzing Monte Carlo simulation for the comparison of laser fluence distributions with different laser wavelengths the characterization of the spectral changes during Nd:YAG laser(${\lambda}$ = 1444 nm) irradiation was investigated in the ranges of 900-1700 nm with double integrating spheres. The surface temperature distribution changes during laser irradiation were investigated with an infrared camera. The quantitative measurements of optical and thermal characteristics in cartilage after laser irradiation were correlated with the transition of water flux(from bound to free water) and this study may be useful for better understanding of biophysical transformation phenomena in cartilage after laser heating.

Gene Disruption Using In Vivo and In Vitro Methylation in Streptomyces griseus

  • Maeng Jin-Soo;Bae Kyung-Sook;Kwak Jang-Yul
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1472-1476
    • /
    • 2006
  • Previous study demonstrated that the restriction barrier of Streptomyces griseus is almost completely bypassed by the Streptomyces-E. coli shuttle vectors passed through the E. coli GM161 strain and methylated with AluI and HpaII methyltransferases. The same DNA methylation of the genomic DNA fragments cloned the nonreplicative vectors generated integrative transformation and gene disruption of their chromosomal counterparts at high efficiencies in S. griseus. This result indicated that the efficiency of gene disruption depends on the efficient transfer of the incoming DNA into bacterial hosts.

Nd:YAG 레이저(${\lambda}$ = 1444 nm)를 이용한 연골 재성형 효과 규명 (Evaluation of Effective Cartilage Reshaping using Nd:YAG laser (${\lambda}$ = 1444 nm))

  • 윤진희;윤종인
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권6호
    • /
    • pp.472-480
    • /
    • 2010
  • Mechanically deformed cartilage undergoes a temperature dependent phase transformation resulting in reshaping of cartilage. Laser-assisted cartilage reshaping (LCR) is recently introduced to recreate the underlying cartilage framework in structures such as ear, larynx, trachea, and nose. However, this procedure has not been fully supported by confirmed efficacy because of the lack of scientific research and its safety issues. The purpose of this study is to evaluate current laser sources to determine optimal laser wavelength for LCR using mathematical simulations and investigate optical, thermo-mechanical, and backscattering properties of cartilage after laser irradiation. The results showed that 1444 nm wavelength was effective for reshaping of cartilage with minimal thermal damage in the surrounded tissues by monte carlo simulations. Analysis of bend angle changes, thermo-mechanical characteristics, and backscattered properties may be useful to better identify the biophysical transformation responsible for stress relaxation in cartilage and develop an optical feedback control methodologies.