• Title/Summary/Keyword: biomimetic polymer

Search Result 47, Processing Time 0.023 seconds

Facially Amphiphilic Architectures as Potent Antimicrobial Peptide Mimetics: Activity and Biophysical Insight

  • Tew Gregory N.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.261-261
    • /
    • 2006
  • Membranes are a central feature of all biological systems and their ability to control many cellular processes is critically important. As a result, a better understanding of how molecules bind to biological membranes is an active area of research. In this report, the interaction between our biomimetic structures and different biological membranes is reported using both model vesicle and in vitro bacterial cell experiments. These results show that lipid composition is more important for selectivity than overall net charge. An effort is made to connect model vesicle studies with in vitro data and naturally occurring lipid compositions.

  • PDF

Biomimetic MIP Terpene Sensors Adding Conductive Polymers (전도성 고분자가 첨가된 생체 모방형 분자 각인 고분자 테르펜 센서)

  • Jung, Jae-Hun;Lee, Sung-Pil
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.345-351
    • /
    • 2012
  • Biomimetic terpene sensors which have high sensitivity and stability have been fabricated using moleculary imprinted polymer (MIP) technology. Since it is impossible to make a resistive type sensor due to the high resistance of MIP, we improved the sensor by adding conductive polymers. We investigated the sensitivity of resistive type sensors with nano particles depending on the amount of conductive polymers. The MIP membrane contained the methacrylic acid as functional monomer and ethylene glycol dimethacrylate as cross linker, which formed specific cavities originated by the target terpene molecules. The mixture of MIP and the conductive polymer was coated on the patterns of interdigit electrodes on the alumina substrate. The fabricated sensors showed their highest specific sensitivities exposed to 500 ppm target gases : limonene 0.055 at 40% of amount of conductive polymers and geraniol $5.84{\times}10^{-4}$ at 20% of amount of conductive polymers. In conclusion, we found that the terpene sensors are affected by the target molecules, functional monomers and the conductive polymers.

Biomimetic Actuator and Sensor for Robot Hand (로봇 손용 인체모방형 구동기 및 센서)

  • Kim, Baek-Chul;Chung, Jinah;Cho, Hanjoung;Shin, Seunghoon;Lee, Hyongsuk;Moon, Hyungpil;Choi, Hyouk Ryeol;Koo, Jachoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1497-1502
    • /
    • 2012
  • To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP-based capacitive sensor and evaluate its use as a robot hand sensor.

Biomimetic Actuator Based on Dielectric Polymer (유전성 고분자를 이용한 생체모방형 구동기)

  • Jung Kwangmok;Ryew Sungmoo;Koo Igmo;Jeon Jaewook;Koo Jachoon;Nam Jaedo;Lee Youngkwan;Choi Hyoukryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1271-1279
    • /
    • 2004
  • A new bio-mimetic actuator is proposed. The actuator realizes bidirectional actuation since it is with a stretched film antagonistically configured with compliant electrodes. Also, it is distinguished from existing actuators with respect to the controllability of its compliance. Bidirectional actuation and compliance controllability are important characteristics for the artificial muscle actuator and the proposed one accomplishes these requirements without any mechanical substitute or complicated algorithms. In this paper its basic concepts and working principles are introduced with static and dynamic analysis. Control strategies for displacement as well as stiffness are introduced and experimental results are given to confirm the effectiveness of the proposed methods. In addition, an example of robotic actuating devices is given to confirm the usefulness of the proposed actuator.

CP-EAPap biomimetic actuator fabrication and performance (CP-EAPap 생체모방 작동기의 제조 및 성능)

  • Li, Qubo;Kim, Jae-Hwan;Deshpande, S.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.360-363
    • /
    • 2005
  • Biomimetic actuators composed of cellophane with an electrically conducting polyaniline(PANI) film have been fabricated and tested in air ambience conditions doped with two different counter ions such as perchlorate (${ClO_4}^-$) and tetrafluoroborate (${BF_4}^-$). Fabrication of the trilayer CP//CELLOPHANE//CP substantially enhanced the tip displacement (13.2mm) compared to the small displacement (8.3mm) of the bilaye. CP//CELLOPHANE. The ion migration among layers is the main factor behind the expansion of cellophane, while the expansion/contraction of PANI are dependent on the redox reaction of the polymer. The displacement of the composite is dominated by the humidity content. This implies that the actuation principle is possibly due to the assistance of water existing.

  • PDF

Spherical arrangement of biomimetic polymer photonic structures (자연모사를 통한 미세 고분자 포토닉 구조의 구면배열에 관한 연구)

  • Jeong, Ki-Hun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.403-404
    • /
    • 2007
  • Compound eyes in nature present intriguing topics in physiological optics due to their unique optical scheme for imaging. For example, a bee's eye has thousands of integrated photonic units called ommatidia spherically arranged along a curvilinear surface so that each unit points in a different direction. The omni-directionally arranged ommatidium collects incident light with a narrow range of angular acceptance and independently contributes to the capability of wide field-of-view (FOV) detection. Artificial implementation of compound eyes has attracted a great deal of research interest because the wide FOV exhibits a huge potential for medical, industrial, and military applications. So far, imaging with a FOV over $90^{\circ}$ has been achieved only with fisheye lenses which rely on bulky and expensive multiple lenses and require stringent alignment. In this talk, we will discuss about the spherical 3D arrangement of the photonic structures of biologically inspired artificial compound eyes in a small form-factor to have and the functional and anatomical similiarity with natural compound eyes.

  • PDF

Molecular Imprints in Nanostructured Polymer Surfaces - A New Generation of Biomimetic Materials for Chemical Sensors

  • Haupt, Karsten
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.31-32
    • /
    • 2006
  • We describe the preparation of nanostructured molecularly-imprinted surfaces using nanomolding on porous alumina. In molecular imprinting functional and cross-linking monomers are copolymerized in the presence of a molecular template, resulting in synthetic receptor materials. The drug propranolol and the dye fluorescein were used as the molecular imprinting templates. Binding studies with imprinted and non-imprinted surfaces revealed specific recognition of the templates and thus the existence of selective binding sites. In addition, the surface properties of the films were studied by water contact angle measurements. It was found that, depending on the monomers used, certain nanostructures induced great changes in the wetting properties of the surface.

  • PDF

Fabrication of polymer hierarchical structures by two-step temperature-directed capillary (2단계 모세관 리소그라피 기술을 이용한 마이크로/나노 병합구조 공정 기술 및 수학적 모델을 통한 표면 특성 분석)

  • Jeong H.E.;Lee S.H.;Kim J.K.;Suh K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.272-274
    • /
    • 2005
  • A simple method for fabricating micro/nanoscale hierarchical structures is presented using a two-step temperature-directed capillary molding technique. This lithographic method involves a sequential application of molding process in which a uniform polymer-coated surface is molded with a patterned mold by means of capillary force above the glass transition temperature of the polymer. Using this approach, multiscale hierarchical structures for biomimetic functional surfaces can be fabricated with precise control over geometrical parameters and the wettability of a solid surface can be designed in a controllable manner.

  • PDF

Design and Control of a Biomimetic Fish Robot (생체 모방 로봇 물고기의 설계와 제어에 관한 연구)

  • Kim, Young-Jin;Kim, Seung-Jae;Yang, Kyung-Sun;Lee, Jeong-Min;Yim, Chung-Hyuk;Kim, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper introduces the mechanical design, fabrication, and control of a biomimetic fish robot whose driving motions resemble a real fish's flexibility and movement. This robot uses two motors create flexible movement like that of a fish. Several schemes, such as neutral buoyancy, fast underwater swimming, and direction changes, are introduced. The tail of the fish robot is made of a polymer material for flexible movement. The interior of the tail contains a joint and a wire. A sine wave command was applied to the tail to produce motion resembling a real fish swimming, and a buoy control device was installed. The up and down motion of the robot fish was controlled using this device.