• Title/Summary/Keyword: biomass estimation

Search Result 262, Processing Time 0.036 seconds

Biomass, Primary Nutrient and Carbon Stock in a Sub-Himalayan Forest of West Bengal, India

  • Shukla, Gopal;Chakravarty, Sumit
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.12-23
    • /
    • 2018
  • Quantitative information on biomass and available nutrients are essential for developing sustainable forest management strategies to regulate atmospheric carbon. An attempt was made at Chilapatta Reserve Forest in Duars region of West Bengal to quantify its above and below ground carbon along with available "N", "P" and "K" in the soil. Stratified random nested quadrats were marked for soil, biomass and litter sampling. Indirect or non-destructive procedures were employed for biomass estimation. The amount of these available nutrients and organic carbon quantified in soil indicates that the forest soil is high in organic carbon and available "K" and medium in phosphorus and nitrogen. The biomass, soil carbon and total carbon (soil C+C in plant biomass) in the forest was 1,995.98, 75.83 and $973.65Mg\;ha^{-1}$. More than 90% of the carbon accumulated in the forest was contributed by the trees. The annual litter production of the forest was $5.37Mg\;ha^{-1}$. Carbon accumulation is intricately linked with site quality factors. The estimated biomass of $1,995.98Mg{\cdot}ha^{-1}$ clearly indicates this. The site quality factor i.e. tropical moist deciduous with optimum availability of soil nutrients, heavy precipitation, high mean monthly relative humidity and optimum temperature range supported luxuriant growth which was realized as higher biomass accumulation and hence higher carbon accumulated.

Biomass estimation of fish in Samcheok marine ranching area (MRA) of Korea using the scientific echosounder (과학어군탐지기를 이용한 삼척 바다목장 해역의 어류 자원량 추정)

  • Jungkwan LEE;Geunchang PARK;Sunyoung OH;Sara LEE;Wooseok OH;Doo Jin HWANG;Kyounghoon LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.3
    • /
    • pp.242-252
    • /
    • 2023
  • In this study, we aimed to determine the seasonal distribution and biomass of fish in Samcheok marine ranching area (MRA) of Republic of Korea using the scientific echosounder. Fish trap and gillnets were used to identify fish species in the survey area, and dB-difference method was used to estimation the spatio-temporal distribution and density of fish. The results showed that the dominant species in Samcheok marine ranching area were Chelidonichthys spinosus, Sebastes inermis, Hexagrammos otakii and Tribolodon hakonensis. The spatio-temporal distribution of fish showed that fish had a relatively higher distribution at night than during the day. In addition, the density of fish by season was highest at night in July at 34.22 g/m2 and lowest in April at 0.42 g/m2.

Estimation of Forest Biomass in Korea (우리나라 산림 바이오매스 추정)

  • Son, Yeong Mo;Lee, Kyeong Hak;Kim, Rae Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.4
    • /
    • pp.477-482
    • /
    • 2007
  • Forest biomass became a topic because we have growing interest in global environmental issues and environment-friendly energy resources. This study was carried out to estimate the forest biomass and develop a program for biomass information management in Korea. The total forest biomass (million ton) were 521 for gross forest, 403 for productive forest and 201 for commercial forest in 2005. Also, the annual biomass production in forest was 20 million ton which was equivalent to 94,290 Gkcal of heating value and about 9 billion won of paraffin oil. The biomass growing rate (every 10year) increased from 4.95% in 1985 to 5.30% in 1995 but turn down 4.46% in 2005. The factors that the forest stock could be converted to the forest biomass have developed according to forest type. Therefore, it is impossible to estimate the exact biomass by tree species. In this reason, the demands of the development of the factors by tree species was raised. In addition, it is on time to develop an equation for estimation of biomass by species using dbh and height as independent factors.

Estimation for Seaweed Biomass Using Regression: A Methodological Approach (회귀분석을 이용한 해조류 생물량 측정을 위한 방법론)

  • Ko, Young-Wook;Sung, Gun-Hee;Kim, Jeong-Ha
    • ALGAE
    • /
    • v.23 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • To estimate seaweed biomass or standing crop, a nondestructive sampling can be beneficial because of not much destroying living plants and saving time in field works. We suggest a methodological procedure to estimate seaweed biomass per unit area in marine benthic habitats by using species-specific regression equations. Percent cover data are required from the field samplings for most species to convert them to weight data. However, for tall macroalgae such as kelps we need density data and their size (e.g., size class for subtidal kelps) of individuals. We propose that the field sampling should be done with 5 replicates of 50 cm x 50 cm quadrat at three zones of intertidals (upper, middle, lower) and three depth points (1, 5, 10 m) in subtidals. To obtain a reliable regression equation for a species, a substantial number of replicate is necessary from destructive samplings. The regression equation of a species can be further specified by different locality and different season, especially for the species with variable morphology temporally and spatially. Example estimation carried out in Onpyung, Jeju Island, Korea is provided to compare estimated values with real weight data.

Estimation of Synthesis Gas Composition by Biomass Fuel Conditions using Thermodynamic Equilibrium Model (열역학적 평형모델을 이용한 바이오매스 연료조건에 따른 합성가스 조성의 예측)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • A thermochemical equilibrium model was constructed for predicting composition of synthesis gas in biomass gasification. The model included estimation of equilibrium constants using Gibbs free energy. After constructing the model, the results were compared with the experimental values and predictions from a previous model. Gas compositions were reasonably well agreed with them and showed effects of operational and fuel condition. When the reaction temperature increased, the lower heating values decreased due to the decrease in CH4 concentrations. The methane concentrations were lower than those observed in experimental results. The model was used to predict the gas composition and heating values for the cases of mixed fuel of charcoal and un-dry woodchips. Although downdraft gasifiers require fuels less than 15% of moisture contents, the model results indicated that the mixed fuel with charcoal and woodchips which had over 25% of moisture contents could be used in the downdraft gasifiers. It might be explained by increase in energy density resulting from mixing charcoal. The results imply that the efforts and costs for drying biomass fuels could be reduced by mixing charcoal or fuels with higher calorific values.

Reduction of Green House Gases by Bioenergy Supplying in Korea (국내 바이오에너지 보급에 따른 온실가스 저감 평가)

  • Hong, Yeon Ki
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, the development of renewable energy sources in Korea has been needed due to climate change. One of powerful alternative energy resources to mitigate emission is to switch conventional fuels to renewable energy, such as bioenergy. In this study, current status of bioenergy conversion technology and its supply in Korea was investigate. Based on theoretical, technical and realizable potential of biomass in Korea, the amount of reduction of green house gases was estimated. The results shown that the contribution of biomass on 2020 reduction target of green house gases emission in power generation was $513,000\;tCO_2/yr$ and utilization ratio of technical potential of biomass was 6.4%. For the effective supply of bioenergy in Korea, more exact estimation of realizable potential of biomass in Korea and stable supply sources are needed.

Estimation of carbon sequestration in natural forests - A Geospatial Approach - (자연 삼림의 탄소 분리 추정에 관한 연구)

  • Ramachandran, Ramachandran;Jayakumar, S.;Heo, Joon;Kim, Woo-Sun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.359-362
    • /
    • 2007
  • Estimation of carbon in the natural forest regions is a pre-requisite for carbon management. In the light of increasing carbon dioxide concentration in the atmosphere, the amount of carbon present in the plants and soils are very much needed to estimate the sequestered carbons stock of any region. Carbon stock estimation studies are limited in India, especially in the natural forest regions of Eastern ghats of Tamil Nadu. Remote sensing, Geographical Information System (GIS) and global positioning system (GPS) were used along with extensive field and laboratory works to estimate the carbon stock in the living biomass and soil. About five forest types were identified and mapped using satellite data. The total biomass carbon including above and below ground were 2.74 Tg and the total soil organic carbon was 3.48 Tg. This study has yielded significant information about the carbon stock in a natural forest region and it could be used for future comparative studies.

  • PDF

Vegetation Classification and Biomass Estimation using IKONOS Imagery in Mt. ChangBai Mountain Area (IKONOS 위성영상을 이용한 중국 장백산 일대의 식생분류 및 바이오매스 추정)

  • Cui, Gui-Shan;Lee, Woo-Kyun;Zhu, Wei-Hong;Lee, Jongyeol;Kwak, Hanbin;Choi, Sungho;Kwak, Doo-Ahn;Park, Taejin
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.356-364
    • /
    • 2012
  • This study was to estimate the biomass of Mt. Changbai mountain area using the IKONOS imagery and field survey data. Then, we prepared the regression function using the vegetation index derived from the IKONOS and biomass estimated from field measured data of previous studies, respectively. The five vegetation index which used in the regression model was SAVI, NDVI, SR, ARVI, and EVI. As a result, the rank of the R-square from coefficient of correlation was as follow, SAVI(0.84), NDVI(0.73), SR(0.59), ARVI(0.0036), EVI(0.0026). Finally, we estimated the biomass of non-measured area using the Soil Adjusted Vegetation Index (SAVI). This study can be used as reference methodology for the estimation of carbon sinks of primary forest.

Allometric equations, stem density and biomass expansion factors for Cryptomeria japonica in Mount Halla, Jeju Island, Korea

  • Jung, Sung Cheol;Lumbres, Roscinto Ian C.;Won, Hyun Kyu;Seo, Yeon Ok
    • Journal of Ecology and Environment
    • /
    • v.37 no.4
    • /
    • pp.177-184
    • /
    • 2014
  • This study was conducted to develop allometric equations and to determine the stem density and biomass expansion factor (BEF) for the estimation of the aboveground and belowground biomass of Cryptomeria japonica in Jeju Island, Korea. A total of 18 trees were harvested from the 40-year-old C. japonica stands in Hannam experimental forest, Jeju Island. The mean biomass of the C. japonica was $50.4Mg\;ha^{-1}$ in stem wood, $23.1Mg\;ha^{-1}$ in root, $9.6Mg\;ha^{-1}$ in branch, $4.6Mg\;ha^{-1}$ in needle and $4.3Mg\;ha^{-1}$ in stem bark. The diameter at breast height (DBH) was selected as independent variable for the development of allometric equations. To evaluate the performance of these equations, coefficient of determination ($R^2$) and root mean square error (RMSE) were used and results of the evaluation showed that $R^2$ ranged from 71% (root biomass equation) to 96% (aboveground biomass equation) and the RMSE ranged from 0.10 (aboveground biomass equation) to 0.33 (root biomass equation). The mean stem density of C. japonica was $0.37g\;cm^{-3}$ and the mean aboveground BEF was $1.28g\;g^{-1}$. Furthermore, the ratio of the root biomass to aboveground biomass was 0.32.

Study of Biomass Estimation Methods for the Freshwater Cladoceran Species, Simocephalus serrulatus (Koch, 1841) (담수산 지각류 Simocephalus serrulatus (Koch, 1841) 생체량 산정 방법 연구)

  • Hye-Ji Oh;Geun-Hyeok Hong;Yerim Choi;Kwang-Hyeon Chang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.2
    • /
    • pp.161-171
    • /
    • 2023
  • The medium-large cladoceran species Simocephalus spp. predominantly occur in habitats with developed aquatic vegetation. Accordingly, due to Simocephalus' high contribution to zooplankton community biomass in the lake's littoral zone and wetland habitats, estimating their biomass is important to understand the matter cycling based on biological interactions within the aquatic food web. In this study, we reviewed the length-weight regression equations used previously to estimate Simocephalus biomass, directly measured S. serrulatus' body specification (length, width and area) and their biomass(dry weight) using instruments such as a microscopic digital camera and a microscale, and performed regression analysis between each other. When S. serrulatus biomass was estimated using the equation (Kawabata and Urabe, 1998) presented in 『Biomonitoring Survey and Assessment Manual』, Korea, errors between estimates and measures were relatively large compared to the S. serrulatus species-specific biomass estimate equation developed by Lemke and Benke (2003). In addition, both equations showed not only increasing trends in error (estimate-measure) with increasing S. serrulatus' body length, but also in error variance among similar-sized individuals. The results of regression analysis with dry weight by body specifications indicated that the most appropriate equation for estimating the biomass of S. serrulatus was derived from the width-dry weight exponential regression equation (R2=0.9555). The review and development study of such species-specific biomass estimation equations for zooplankton can be used as a tool to understand their role and function in aquatic ecosystem food webs.