• Title/Summary/Keyword: biomass characteristics

Search Result 886, Processing Time 0.029 seconds

Ecological Characteristics and Biomass of White Croaker Pennahia argentata Population in the South Sea of Korean Peninsula (한국 남해안 보구치(Pennahia argentata)의 자원생태학적 특성치 및 자원량 추정)

  • Jeon, Bok Soon;Lee, Hae Won;Kang, Sukyung;Lee, Seung Jong;Oh, Chul-Woong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.721-729
    • /
    • 2022
  • We investigated the ecological characteristics and biomass of white croaker Pennahia argentata population in the South Sea of Korea using catch data from Danish seins fishery and biological data from 2018 to 2020. Survival rate (S), which was estimated using Pauly method (1984) was 0.361 per year, and the instantaneous coefficient of total mortality (Z) was 1.019 per year. The instantaneous coefficient of natural mortality (M) and that of fishing mortality (F) were estimated as 0.351 and 0.668 per year, respectively. At first capture, age was estimated to be 1.19 years and length at this age was 18.7cm. The annual biomass was estimated with a biomass-based cohort analysis using annual catch data between 1997-2020 in Korean water. The biomass of the white croaker declined sharply from 4,000 tons in 1999 to the lowest level of approximately 1,000 tons in 2004. Post 2004, the biomass started to increase gradually and reached approximately 7,000 tons. The amount of resources was 35.7%, 34.8%, and 16.5% at age one, two, and three years, respectively, and 86.9% of all captured white croaker individuals belonged to the age group of 1-3 years.

A Study on the Characteristics of Pollution Load in Biomass Power Plant with Ammonium Sulfate Injection (황산암모늄 주입시 바이오매스 발전소의 오염부하 특성 연구)

  • Lee, Chang-Yeol;Kim, Sung-Hoo;Chung, Jin-Do
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.640-646
    • /
    • 2018
  • Biomass-fired power plants produce electricity and heat by burning biomass in a boiler. However, one of the most serious problems faced by these plants is severe corrosion. In biomass boilers, corrosion comes from burnt fuels containing alkali, chlorine, and other corrosive substances, causing boiler tube failures, leakages, and shorter lifetimes. To mitigate the problem, various approaches implying the use of additives have been proposed; for example, ammonium sulfate is added to convert the alkali chlorides (mainly KCl) into the less corrosive alkali sulfates. Among these approaches, the high temperature corrosion prevention technology based on ammonium sulfate has few power plants being applied to domestic power plants. This study presents the results obtained during the co-combustion of wood chips and waste in a circulating fluidized bed boiler. The aim was to investigate the characteristics of pollution load in domestic biomass power plants with ammonium sulfate injection. By injecting the ammonium sulfate, the KCl content decreased from 68.9 to 5 ppm and the NOx were reduced by 18.5 ppm, but $SO_2$ and HCl were increased by 93.3 and 68 ppm, respectively.

Importance of biomass management acts and policies after phytoremediation

  • Song, Uhram;Park, Hun
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.93-98
    • /
    • 2017
  • Background: Although phytoremediation is a promising method for pollution control, biomass produced by the remediation process must be managed; otherwise, it will eventually return to the environment and cause secondary pollution. Therefore, research and policy development for the post-remediation management of biomass are both required. Results: While there are many published studies of phytoremediation, research into post-remediation management is very limited. Therefore, a new study using biomass as a co-composting material was conducted and showed positive effects on soil characteristics and plant performance. However, despite its potential, research and policies to promote this form of management are still lacking. Conclusions: We suggest public engagement in support of "Post-phytoremediation management" legislation that stipulates management of biomass after phytoremediation, promotes recycling of biomass with known environmental risks, and includes specific policies developed for managers. Further research to support and inform such policies and laws is also required.

Characteristics and Variation of Size-fractionated Zooplankton Biomass in the Northern East China Sea (동중국해 북부해역의 동물플랑크톤 크기그룹별 생체량의 분포 특성 및 변화)

  • Choi, Keun-Hyung;Lee, Chang-Rae;Kang, Hyung-Ku;Kang, Kyeong-A
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.135-147
    • /
    • 2011
  • Zooplankton is an important constituent in assessing ecosystem responses to global warming. The northern East China Sea is an important ecosystem for carbon cycling with a net sink of carbon dioxide. Despite their importance as a major component in carbon cycling, relatively little is known about zooplankton biomass structure and its regulating factors in the northern East China Sea. This study examined zooplankton biomass distribution pattern in the region from multiple cruises encompassing various seasons between 2004 and 2009. Results showed that zooplankton biomass exhibits less cross-shelf gradient in general with declining biomass to the eastern shelf towards the Tsushima Current Water. Size-fractionated biomass showed that the 1.0~2.0 mm size group, mostly copepods, dominated zooplankton biomass, comprising 38 to 48% of total biomass. Smaller zooplankton (0.2~1.0 mm) biomass, consisting mainly of Paracalanus spp, a particle eating herbivorous copepod, was positively related to chlorophyll-a concentration, but no relationship was established for larger zooplankton (1.0~5.0 mm). Spatially-averaged mean total zooplankton biomass was also highly related to chlorophyll-a concentration. These result suggest that the long-term trend of zooplankton biomass increase in this region is partly accounted for by the increases of phytoplankton biomass and productivity underway in the region. However, the underlying mechanisms of how sea surface warming in the study area leads to increased phytoplankton biomass and productivity remains unclear.

A Study on the Characteristics of Torrefaction and Chlorine Release According to the Mild Pyrolysis Temperature Conditions of Biomass Fuels (WP·EFB·PKS) for Power Generation (발전용 바이오매스 연료(WP·EFB·PKS)의 열분해 온도 조건에 따른 반탄화 및 염소 방출 특성에 관한 연구)

  • KIM, JI-HUN;PARK, JAE-HEUN;CHOI, JAE-HYUN;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • Wood pellet (WP), empty fruit bunch (EFB) and palm kernel shell (PKS) which are biomass fuels for power generation are selected to study the characteristics of torrefaction process. These biomass fuels are torrefied at $220^{\circ}C$, $250^{\circ}C$, and $280^{\circ}C$. The heating value of biomass fuels is increased depending on the torrefaction temperature. However, due to energy yield decline, it is not always desirable to torrefy biomass at higher temperature. Considering the mass yield and energy yield after torrefaction, the most proper temperature conditions for torrefaction of WP is $250-280^{\circ}C$ and for EFB, PKS are $220-250^{\circ}C$. Additionally, to investigate the phenomenons of chlorine release during torrefaction process, Ion Chromatography (IC) method was used. In the case of EFB and PKS torrefied at $300^{\circ}C$, the chlorine component has been reduced by 97.5% and 95.3% compared to the raw biomass, respectively. In conclusion, torrefied biomass can be used as alternative fuels in replacement of coals for both aspects of heating value and chlorine corrosion problems.

Combustion Characteristics of Coal and Wood Biomass Co-Firing on the Pulverized Coal Combustion Furnace (목질계 바이오매스와 유연탄의 혼합 연소특성에 관한 연구)

  • Kim, Sung-Chul;Lee, Hyun-Dong;Kim, Jae-Gwan
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.293-298
    • /
    • 2006
  • There are many researches in progress on co-firing of coal and biomass to reduce carbon dioxide produced from the coal consumption. This study carried out 200 Kg/h combustion test furnace by mixing coal with timber. Coal was mixed with domestic and imported-wood around 10% to 20% based on input energy. For the mixed fuel, combustion temperature, unburned carbon and the composition of flue gas were analyzed. In addition, the tendency of slagging and fouling was examined using a probe. According to the result of the experiment, combustion temperature was depended on the kind of wood and mixing ratio. The unburned carbon loss was higher with increase of wood biomass mixing ratio, as a result, the total heat loss of furnace was slightly increased. The emission of NOx and SOx were decreased by $3{\sim}20%$ and $21{\sim}60%$ respectively. There are no difference of slagging and fouling tendency between biomass co-firing and coal burning only.

  • PDF

A Research Trend on Utilization of the Byproducts(Lignin) from Bioethanol Production Process with Lignocellulosic Biomass: A Literature Review (목질바이오매스 에너지 부산물(리그닌)이용에 관한 연구 동향)

  • Kim, Yeong-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.27 no.3
    • /
    • pp.183-194
    • /
    • 2011
  • This study reviewed on the research trend of sources and utilization of the byproducts(Lignin) from bioethanol production process with lignocellulosic biomass such as wood, agri-processing by-products(corn fiber, sugarcane bagasse etc.) and energy crops(switch grass, poplar, Miscanthus etc.). During biochemical conversion process, only Cellulose and hemicellulosic fractions are converted into fermentable sugar, but lignin which represents the third largest fraction of lignocellulosic biomass is not convertible into fermentable sugars. It is therefore extremely important to recover and convert biomass-derived Lignin into high-value products to maintain economic competitiveness of cellulosic ethanol processes. It was introduced that lignin types and characteristics were different from various isolation methods and biomass sources. Also utilization and potentiality for market of those were discussed.

Above-ground Biomass and Crown Fuel Characteristics of Pinus densiflora in Yangyang, Gangwon Province (강원도 양양지역 소나무림의 지상부 바이오매스와 수관층 연료특성에 관한 연구)

  • Kim, Sungyong;Lee, Youngjin;Jang, Mina;Seo, Yeonok;Koo, Kyosang;Jung, Sungcheol;Kim, Kyungha
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.244-250
    • /
    • 2012
  • The objective of this study was to analyze the above-ground biomass and crown fuel characteristics of Pinus densiflora stands in Yangyang, Gangwon province. A total of thirteen representative trees were destructively sampled in Yangyang region. The results showed that the stem density ($g{\cdot}cm^{-3}$) was 0.347~0.409, whereas the above-ground biomass expansion factors ranged from 1.251~1.419. In terms of crown fuel biomass, the above-ground biomass was $161.6Mg{\cdot}ha^{-1}$ while the stem biomass, branch biomass and needle biomass were $126.4Mg{\cdot}ha^{-1}$, $29.3Mg{\cdot}ha^{-1}$ and $5.9Mg{\cdot}ha^{-1}$, respectively. Needles and twigs with less than 1 cm diameter accounted 45.2% of the total crown fuel load. The available crown bulk density, which was calculated by dividing the crown fuel load to the crown volume, was $0.178kg{\cdot}m^{-3}$. The results of this study on the biomass and carbon stocks estimation of the Pinus densiflora together with the crown fire hazard assessment based on crown fuel loads are very significant information for the forest managers.

Study on the Characteristics of Bio-mass according to Various Process of Torrefaction (반탄화 공정 변화에 따른 바이오매스 연료의 특성 연구)

  • Ohm, Tae-In;Chae, Jong-Seong;Kim, Jung-Ku;Choi, Soo-A;Oh, Sea-Cheon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.375-378
    • /
    • 2014
  • In this study, we carried out torrefaction experiment using PKS(Palm Kernel Shell), and Bagasse as a raw material of oversee of herbaceous biomass and using waste wood and logging residue as a raw material of domestic of woody biomass. And then, by analyzing the physical & chemical properties, we investigated the characteristics as a fuel. By using the result of thermo gravimetric analysis, the biomass residue was torrefied for 30 minutes at a temperature range of $250-350^{\circ}C$ in anaerobic condition. As a result, torrefied materials of moisture content are lower than raw, but of fixed carbon, calorific value and ash are higher than raw.

  • PDF

Sewage Treatment using Aerated Submerged Biological Filter(ASBF) (호기성 침지형 생물막 여과장치를 이용한 오수처리)

  • Park, Jong-Woong;Song, Ju-seok
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.523-532
    • /
    • 2000
  • The purpose of this study was to investigate the effects of the hydraulic retention time (HRT) and organic loading rate (OLR) on microbial characteristics and treatment efficiency in sewage treatment using aerated submerged biological filter (ASBF) reactor. This reactor combines biodegradation of organic substrates by fixed biomass with a physical separation of biomass by filtration in a single reactor. Both simulated wastewater and domestic wastewater were used as feed solutions. The experimental conditions were a temperature of 17 to $27^{\circ}C$, a hydraulic retention time of 1 to 9hr, an organic loading rate of 0.47 to $3.84kg\;BOD/m^3{\cdot}day$ in ASBF reactor. This equipment could obtain a stable effluent quality in spite of high variation of influent loading rate. Total biomass concentration. biofilm thickness and biofilm mass increased an exponential function according to the increasing OLR. The relationships between water content and biofilm density were in inverse proportion. The percentage of backwash water to influent flow was almost 9%. The separation efficiency of biomass was the percentage of 91 to 92 in ASBF reactor. The sludge production rates in feed solutions of simulated wastewater and domestic wastewater were 0.14~0.26 kg VSS/kg BODrem, 0.43~0.48 kg VSS/kg BODrem, respectively.

  • PDF