• Title/Summary/Keyword: biomass characteristic

Search Result 83, Processing Time 0.024 seconds

Ecotype-Dependent Genetic Regulation of Bolting Time in the Arabidopsis Mutants with Increased Number of Leaves

  • Lee, Byeong-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.542-546
    • /
    • 2009
  • Leaves are the major biomass-producing organs in herbaceous plants and mainly develop during vegetative stage by activities of shoot apical meristem. There is a strong correlation between leaf number and bolting, a characteristic phenotype during the transition to reproductive phase in Arabidopsis thaliana. In order to study interactions between leaf number and bolting, we isolated a Landsberg erecta-derived mutant named multifolial (mfo1) that produces increased number of leaves and bolts at the same time as the wild type. Through positional cloning and allelism test, mfo1 was found to be an allele of a previously reported mutant, altered meristem program1-1 (amp1-1) that is defective in a glutamate carboxypeptidase and bolts earlier than its wild type, Columbia ecotype, with the increased number of leaves. The bolting time differences between mfo1 and amp1, despite the same phenotype of many leaves, suggest the existence of genetic factor(s) differently function in each ecotype in the presence of mfo1/amp1 mutation.

High Density Cell Cultivation of Escherichia coli in a Dual Hollow Fiber Bioreactor (이중실관 반응기에서 E. coli의 고농도 배양)

  • Chung, Bong-Hyun;Chang, Ho-Nam;Kim, In-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.209-212
    • /
    • 1985
  • The cell density and packing characteristics of Escherichia coli immobilized in a dual hollow fiber bioreactor consisting of outer silicone membrane for oxygen transport and three inner isotropic polypropylene hollow fibers for substrate transport were investigated. The cells have grown forming the layer like animal tissue in a nearly 100% packing density. The dry biomass density was 550g/liter of void volume for cell growth, which was the highest among the biomass densities ever reported.

  • PDF

Catalytic Carbonization of Biomass and Nonisothermal Combustion Reactivity of Torrefied Biomass (바이오매스 촉매 탄화 및 반탄화 바이오매스의 비등온 연소 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.725-731
    • /
    • 2018
  • The effects of catalysts addition on the carbonization reaction of biomass have been studied in a thermogravimetric analyzer (TGA). The sample biomasses were Bamboo and Pine. The catalysts tested were K, Zn metal compounds. The carbonization reactions were tested in the nonisothermal condition from the room temperature to $850^{\circ}C$ at a heating rate $1{\sim}10^{\circ}C/min$ on the flowing of $N_2$ purge gases. Also, the effects of catalyst on the torrefaction were tested in the temperature condition of 220, 250, $280^{\circ}C$ at 30 min. Combustion characteristic for the torrefied catalyst biomass were studied in the nonisothermal conditions of $200{\sim}850^{\circ}C$. As the results, the initial decomposition temperatures of the volatile matters ($T_i$) and the temperature of maximum reaction rate ($T_{max}$) were decreased with increasing the catalyst amounts in the sample biomass. The char amounts remained after carbonization at $400^{\circ}C$ increased with the catalyst amounts. Therefore catalysts addition can be decreased the energy for carbonization process and improved the heating value of product char. The catalysts reduced the optimum torrefaction conditions from $250^{\circ}C$ to $220^{\circ}C$. The torrefied catalyst biomass have lower activated energy from 46.5~58.7 kJ/mol to 25.1~27.0 kJ/mol in the nonisothermal combustion reaction.

Synthesis of Various Biomass-derived Carbons and Their Applications as Anode Materials for Lithium Ion Batteries (다양한 바이오매스 기반의 탄소 제조 및 리튬이온전지 음극활물질로의 응용)

  • Chan-Gyo Kim;Suk Jekal;Ha-Yeong Kim;Jiwon Kim;Yeon-Ryong Chu;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, various plant-based biomass are recycled into carbon materials to employ as anode materials for lithium-ion batteries. Firstly, various biomass of rice husk, chestnut, tea bag, and coffee ground are collected, washed, and ground. The carbonization process is followed under a nitrogen atmosphere at 850℃. The morphological and chemical properties of materials are investigated using FE-SEM, EDS, and FT-IR to compare the characteristic differences between various biomass. It is noticeable that biomass-derived carbon materials vary in shape and degree of carbonization depending on their precursor materials. These materials are applied as anode materials to measure the electrochemical performance. The specific capacities of rice husk-, chetnut-, tea bag-, and coffee ground-derived carbon materials are evaluated as 65.8, 80.2, 90.6, and 104.7 mAh g-1 at 0.2C. Notably, coffee ground-based carbon exhibited the highest specific capacity owing to the difference in elemental composition and the degree of carbonization. Conclusively, this study suggests the possibility of utilizing as energy storage devices by employing various plant-based biomass into active materials for anodes.

Combustion Chracteristics of Biomass and Refuse Derived Fuel (바이오매스와 폐기물 고형연료의 연소특성)

  • Gu, Jae-Hoi;Oh, Sea Cheon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.456-461
    • /
    • 2012
  • To verify the utilization of biomass as energy, the combustion characteristic has been studied by an experimental combustion furnace under an isothermal and non-isothermal combustion. The wood pellet, rice straw and rice husk were used as biomass samples in this work. The characteristics of emission gases, dusts and residues from biomass combustion have been analyzed and compared with those of reuse derived fuel (RDF). From isothermal combustion experiments, it was found that the incomplete combustion of rice straw was greater that that of rice husk, wood pellet and RDF. This is due to the fact that the combustion reaction rate of the rice straw was faster than that of other samples, and the oxygen concentration in rice straw combustion was rapidly decreasing. It was also found that $NO_{X}$ concentration of emission gas from wood pellet combustion was the lowest. From non-isothermal combustion experiments, it was found that all samples were burned before $900^{\circ}C$. Also, the temperature range of $NO_{X}$ emission was similar to that of CO emission, on the other hand, $SO_{2}$ was emitted at a higher temperature than that of CO emission.

Benthic algal community of Ulleungdo, East coast of Korea (동해안 울릉도 해역의 해조군집)

  • KIM, Sung-Tae;HWANG, Kangseok;PARK, Gyu-Jin;CHOI, Chang Geun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.1
    • /
    • pp.83-90
    • /
    • 2016
  • A subtidal marine benthic algal vegetation at Ulleungdo Island, the eastern coast of Korea was investigated to clarify the community structure and vertical distribution by quadrat method at seven stations in May and August 2014. The total number of marine algal species was 148 species composed of the green algae of 12 species, the brown algae of 40 species and the red algae of 96 species. Mean biomass in dry weight was $94.8g\;dry\;weight\;m^{-2}$ in study sites, $98.1g\;dry\;weight\;m^{-2}$ in upper tidal level, and $86.6g\;dry\;weight\;m^{-2}$ in middle level. The R/P and (R+C)/P value reflecting flora characteristic were 1.9 and 2.3, respectively. Three groups produced by cluster analysis, one including sites Neunggeol, Daepung, Jukdo, second including sites Gongam, Ssangjeongcho and the other including sites Gwaneum, Hangnam, showed meaningful difference in similarity (about 40%), each other. The number of marine algal species and biomass in Ulleungdo Island area were markedly reduced comparing that in the previous studies. This result may suggest probably change of algal vegetation in future, considering the physical and chemical pollutions loaded in the coastal marine environment of this area.

Mesozooplankton Community Structure in the Yellow Sea in Summer (여름철 황해의 중형동물플랑크톤 군집 구조)

  • Kim, Garam;Kang, Hyung–Ku
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.269-277
    • /
    • 2021
  • We investigated mesozooplankton community in the Yellow Sea in summer immediately after the typhoon passed. Total mesozooplankton density ranged from 1,323 to 6,397 ind. m-3 and the biomass ranged from 3 to 28 mg C m-3 by stations. The dominant species of the research area were Paracalanus parvus s.l., Oithona atlantica, Acartia omorii, Oikopleuridae, Sagittoidae juvenile and Calanus sinicus in that order. Mesozooplankton community was divided into two groups by cluster analysis : the stations located in coastal and open seas as one group, and the stations located in the middle into another group. The number of species, density and richness of mesozooplankton were significantly lower in the middle region. Mesozooplankton density and biomass were not significantly correlated with chl-a concentrations, unlike previous studies in spring and autumn. This community characteristic in summer may be due to the passing of the typhoon, or other environmental influences.

Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization (열수탄화를 통해 kenaf로부터 hydrochar생산과 공정 조건에 따른 hydrochar 특성에 끼치는 영향)

  • Youn, Hee Sun;Um, Byung Hwan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The lignite and bituminous coal are mainly used in thermal power plant. They exhaust green house gas (GHG) such as CO2, and become deplete, thus require alternative energy resources. To solve the problem, the hydrochar production from biomass is suggested. In this study, both hydrothermal carbonization (HTC) and solvothermal carbonization (STC) were used to produce high quality hydrochar. To improve the reactivity of water solvent process in HTC, STC process was conducted using ethanol solution. The experiments were carried out by varying the solid-liquid ratio (1:4, 1:8, 1:12), reaction temperature (150~300 ℃) and retention time (15~120 min) using kenaf. The characteristic of hydrochar was analyzed by EA, FT-IR, TGA and SEM. The carbon content of hydrochar increased up to 48.11%, while the volatile matter decreased up to 39.34%. Additionally, the fuel characteristic of hydrochar was enhanced by reaction temperature. The results showed that the kenaf converted to a fuel by HTC and STC process, which can be used as an alternative energy source of coal.

Effect of Location Error on the Estimation of Aboveground Biomass Carbon Stock (지상부 바이오매스 탄소저장량의 추정에 위치 오차가 미치는 영향)

  • Kim, Sang-Pil;Heo, Joon;Jung, Jae-Hoon;Yoo, Su-Hong;Kim, Kyoung-Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.133-139
    • /
    • 2011
  • Estimation of biomass carbon stock is an important research for estimation of public benefit of forest. Previous studies about biomass carbon stock estimation have limitations, which come from the used deterministic models. The most serious problem of deterministic models is that deterministic models do not provide any explanation about the relevant effects of errors. In this study, the effects of location errors were analyzed in order to estimation of biomass carbon stock of Danyang area using Monte Carlo simulation method. More specifically, the k-Nearest Neighbor(kNN) algorithm was used for basic estimation. In this procedure, random and systematic errors were added on the location of Sample plot, and effects on estimation error were analyzed by checking the changes of RMSE. As a result of random error simulation, mean RMSE of estimation was increased from 24.8 tonC/ha to 26 tonC/ha when 0.5~1 pixel location errors were added. However, mean RMSE was converged after the location errors were added 0.8 pixel, because of characteristic of study site. In case of the systematic error simulation, any significant trends of RMSE were not detected in the test data.