DOI QR코드

DOI QR Code

Catalytic Carbonization of Biomass and Nonisothermal Combustion Reactivity of Torrefied Biomass

바이오매스 촉매 탄화 및 반탄화 바이오매스의 비등온 연소 반응 특성

  • Bak, Young-Cheol (Department of Chemical Engineering, Engineering Research Institute, Gyeongsang National University) ;
  • Choi, Joo-Hong (Department of Chemical Engineering, Engineering Research Institute, Gyeongsang National University)
  • 박영철 (경상대학교 화학공학과, 공학연구원) ;
  • 최주홍 (경상대학교 화학공학과, 공학연구원)
  • Received : 2018.06.19
  • Accepted : 2018.08.31
  • Published : 2018.10.01

Abstract

The effects of catalysts addition on the carbonization reaction of biomass have been studied in a thermogravimetric analyzer (TGA). The sample biomasses were Bamboo and Pine. The catalysts tested were K, Zn metal compounds. The carbonization reactions were tested in the nonisothermal condition from the room temperature to $850^{\circ}C$ at a heating rate $1{\sim}10^{\circ}C/min$ on the flowing of $N_2$ purge gases. Also, the effects of catalyst on the torrefaction were tested in the temperature condition of 220, 250, $280^{\circ}C$ at 30 min. Combustion characteristic for the torrefied catalyst biomass were studied in the nonisothermal conditions of $200{\sim}850^{\circ}C$. As the results, the initial decomposition temperatures of the volatile matters ($T_i$) and the temperature of maximum reaction rate ($T_{max}$) were decreased with increasing the catalyst amounts in the sample biomass. The char amounts remained after carbonization at $400^{\circ}C$ increased with the catalyst amounts. Therefore catalysts addition can be decreased the energy for carbonization process and improved the heating value of product char. The catalysts reduced the optimum torrefaction conditions from $250^{\circ}C$ to $220^{\circ}C$. The torrefied catalyst biomass have lower activated energy from 46.5~58.7 kJ/mol to 25.1~27.0 kJ/mol in the nonisothermal combustion reaction.

바이오매스의 탄화 반응에서 촉매의 영향을 살펴보기 위하여 열중량분석기에서 탄화 반응 실험을 하였다. 사용된 바이오매스는 대나무와 소나무이었고, 사용 촉매는 K, Zn 금속화합물이었다. 질소 분위기에서 상온에서 $850^{\circ}C$까지 승온속도 $1{\sim}10^{\circ}C/min$에서 탄화 실험이 행하여졌다. 또한 석탄과의 혼소를 위한 바이오매스 반탄화 공정에서의 촉매의 영향 실험이 가열속도 $5^{\circ}C/min$, 반탄화 온도 220, 250, $280^{\circ}C$에서 30분간 등온 조건을 유지하면서 행하여졌다. 반탄화 시료에 대한 비등온 연소반응 특성 실험이 $200{\sim}850^{\circ}C$ 구간에서 행하여졌다. 바이오매스가 탄화 되기 시작하는 탄화 개시 온도($T_i$)와 최대탄화속도가 나타나는 온도($T_{max}$)는 촉매량이 증가할수록 낮아졌다. $400^{\circ}C$까지 열분해 되지 않고 남은 잔여 촤 성분은 촉매량이 증가할수록 증가되는 경향성을 보였다. 따라서 촉매 첨가 시 탄화에너지를 감소시키고 생성 촤의 발열량을 개선할 수 있다. 반탄화 조건에서 K촉매가 담지 된 경우 무촉매 바이오매스의 최적조건인 $250^{\circ}C$ 보다 낮은 $220^{\circ}C$까지 반탄화 조건을 완화시킬 수 있었다. K촉매 함유 반탄화 바이오매스의 연소반응에서 활성화에너지는 25.1~27.0 kJ/mol 범위로 무촉매 바이오매스 46.5~58.7 kJ/mol보다 낮게 나타났다.

Keywords

References

  1. Kim, J. H., Park, J. H., Choi, J. H. and Jeon, C. H., "A Study on the Characteristics of Torrefaction and Chlorine Release According to the Mild Pyrolysis Temperature Conditions of Biomass Fuels (WP.EFB.PKS) for Power Generation," Trans. of Korean Hydrogen and New Energy Society, 28(6), 683-690(2017). https://doi.org/10.7316/KHNES.2017.28.6.683
  2. Na, B. I., Ahn, B. J., Cho, S. T. and Lee, J. W., "Optimal Condition of Torrefaction for the High-density Solid Fuel of Larch (Larix kaempferi)," Korean Chem. Eng. Res., 51(6), 739-744(2013). https://doi.org/10.9713/kcer.2013.51.6.739
  3. Prins, M. J., Ptasinski, K. J. and Janssen, F. J. J. G., "Torrefaction of Wood Part 1. Weight Loss Kinetics," J. Anal. Appl. Pyrolysis, 77, 28-34(2006). https://doi.org/10.1016/j.jaap.2006.01.002
  4. Arias, B., Pevida, C., Fermoso, J., Plaza, M. G., Rubiera, F. and Pis, J. J., "Influence of Torrefaction on the Grindability and Reactivy of Woody Biomass," Fuel Processing Technology, 89, 169-175(2008). https://doi.org/10.1016/j.fuproc.2007.09.002
  5. Chen, W. H. and Kuo, P. C., "A Study on Torrefaction of Various Biomass Materials and its Impact on Lignocellulosic Structure Simulated by a Thermogravimetry," Energy, 35, 2580-2586(2010). https://doi.org/10.1016/j.energy.2010.02.054
  6. Chen, W. H. and Kuo, P. C., "Torrefaction and Co-torrefaction Characterization of Hemicellulose, Cellulose and Lignin as well as Torrefaction of Some Basic Constituents in Biomass," Energy, 36, 803-81(2011). https://doi.org/10.1016/j.energy.2010.12.036
  7. Lee, J. W., Kim, Y. H., Lee, S. M., and Lee, H. W., "Torrefaction Characteristics of Wood Chip for the Production of High Energy Density Wood Pellet," Korean Chem. Eng. Res., 50(2), 385-389 (2012). https://doi.org/10.9713/kcer.2012.50.2.385
  8. Kim, Y. H., Na, B. I., Ahn, B. J., Lee, H. W. and Lee, J. W., "Optimal Condition of Torrefaction for High Energy Density Solid Fuel of Fast Growing Tree Species," Korean J. Chem. Eng., 32(8), 1547-1553(2015). https://doi.org/10.1007/s11814-014-0360-4
  9. Phusunti, N., Phetwarotai W. and Tekasakul, S., "Effects of Torrefaction on Physical Properties, Chemical Composition and Reactivity of Microalgae," Korean J. Chem. Eng., 35(2), 503-510(2018). https://doi.org/10.1007/s11814-017-0297-5
  10. Yao, C., Tian, H., Hu, Z., Yin, Y., Chen, D. and Yan, X., "Characteristics and Kinetics Analyses of Different Genus Biomass Pyrolysis," Korean J. Chem. Eng., 35(2), 511-517(2018). https://doi.org/10.1007/s11814-017-0298-4
  11. Bak, Y. C. and Choi, J. H., "Influence of Various Catalyst on the Biomass Pyrolysis Reaction," Trans. of Korea Hydrogen and New Energy Society, 28(5), 536-544(2017). https://doi.org/10.7316/KHNES.2017.28.5.536
  12. Zhao, S., Liu, M., Zhao, L. and Lu, J., "Effects of Organic and Inorganic Metal Salts on Thermogravimetric Pyrolysis of Biomass Components," Korean J. Chem. Eng., 34(12), 3044-517(2017).
  13. Mohan, D., Pittman, C. U. and Steele, P. H., "Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review," Energy & Fuels, 20, 848-889(2006). https://doi.org/10.1021/ef0502397
  14. Bak, Y. C. and Son, J. E., "Nonisothermal Coal Pyrolysis and Char-$CO_2$ Gasification Reactivity," Korean Chem. Eng. Res., 25(6), 546-554(1987).
  15. Lee, J. G., "Development of Distributed Power Generation Tech- nology by Biomass Gasification," Ministry of Knowledge Economy Report(2006-N-B102-P-11), pp. 40(2008).
  16. Ghaly, A. E., Ergudenler, A. and Taweel, A. M., "Determination of the Kinetic Parameters of Oat Straw using Thermogravimetric Analysis," Biomass and Bioenergy, 5(6), 457-465(1993). https://doi.org/10.1016/0961-9534(93)90041-2