• Title/Summary/Keyword: biological stability

Search Result 838, Processing Time 0.027 seconds

Stability analysis of a three-layer film casting process

  • Lee, Joo-Sung;Shin, Dong-Myeong;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • The co-extrusion of multi-layer films has been studied with the focus on its process stability. As in the single-layer film casting process, the productivity of the industrially important multi-layer film casting and the quality of thus produced films have often been hampered by various instabilities occurring in the process including draw resonance, a supercritical Hopfbifurcation instability, frequently encountered when the draw ratio is raised beyond a certain critical value. In this study, this draw resonance instability along with the neck-in of the film width has been investigated for a three-layer film casting using a varying width non-isothermal 1-D model of the system with Phan-Thien and Tanner (PTT) constitutive equation known for its robustness in portraying extensional deformation processes. The effects of various process conditions, e.g., the aspect ratio, the thickness ratio of the individual film layers, and cooling of the process, on the stability have been examined through the nonlinear stability analysis.

Modification of ERα by UFM1 Increases Its Stability and Transactivity for Breast Cancer Development

  • Yoo, Hee Min;Park, Jong Ho;Kim, Jae Yeon;Chung, Chin Ha
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.425-434
    • /
    • 2022
  • The post-translational modification (e.g., phosphorylation) of estrogen receptor α (ERα) plays a role in controlling the expression and subcellular localization of ERα as well as its sensitivity to hormone response. Here, we show that ERα is also modified by UFM1 and this modification (ufmylation) plays a crucial role in promoting the stability and transactivity of ERα, which in turn promotes breast cancer development. The elevation of ufmylation via the knockdown of UFSP2 (the UFM1-deconjugating enzyme in humans) dramatically increases ERα stability by inhibiting ubiquitination. In contrast, ERα stability is decreased by the prevention of ufmylation via the silencing of UBA5 (the UFM1-activating E1 enzyme). Lys171 and Lys180 of ERα were identified as the major UFM1 acceptor sites, and the replacement of both Lys residues by Arg (2KR mutation) markedly reduced ERα stability. Moreover, the 2KR mutation abrogated the 17β-estradiol-induced transactivity of ERα and the expression of its downstream target genes, including pS2, cyclin D1, and c-Myc; this indicates that ERα ufmylation is required for its transactivation function. In addition, the 2KR mutation prevented anchorage-independent colony formation by MCF7 cells. Most notably, the expression of UFM1 and its conjugating machinery (i.e., UBA5, UFC1, UFL1, and UFBP1) were dramatically upregulated in ERα-positive breast cancer cell lines and tissues. Collectively, these findings implicate a critical role attributed to ERα ufmylation in breast cancer development by ameliorating its stability and transactivity.

Effects of Various Stabilizers on the Production of hGM-CSF in Transgenic Nicotiana tabacum Suspension Cell Cultures (형질전환된 담배세포배양을 이용한 hGM-CSF 생산에서 여러 가지 단백질 안정제가 미치는 영향)

  • Cho, Jong-Moon;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.185-190
    • /
    • 2007
  • Productivity of secreted recombinant protein depends largely on its stability in the extracellular environment with protease. Most hGM-CSF produced by transgenic tobacco cell cultures and secreted to the medium was confirmed to be rapidly degraded by protease in medium. To increase the productivity, therefore, various protein stabilizers such as gelling agents such as carrageenan and alginate, polymers, polyols, and amino acids have been tested. The stability of hGM-CSF in spent medium without cells was improved by the presence of gelling agents. However, the reason for the enhanced production by the addition of gelling agents may be due to the increased expression level and permeability rather than stability. The addition of DMSO inhibited the cell growth, but improved specific yield. The others were not effective for stability as well as hGM-CSF production.

Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability

  • Dongkeun Park;Youngim Yu;Ji-hyung Kim;Jongbin Lee;Jongmin Park;Kido Hong;Jeong-Kon Seo;Chunghun Lim;Kyung-Tai Min
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.374-386
    • /
    • 2023
  • Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.

USP44 Promotes the Tumorigenesis of Prostate Cancer Cells through EZH2 Protein Stabilization

  • Park, Jae Min;Lee, Jae Eun;Park, Chan Mi;Kim, Jung Hwa
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • Ubiquitin-specific protease 44 (USP44) has been implicated in tumor progression and metastasis across various tumors. However, the function of USP44 in prostate cancers and regulatory mechanism of histone-modifying enzymes by USP44 in tumors is not well-understood. Here, we found that enhancer of zeste homolog 2 (EZH2), a histone H3 lysine 27 methyltransferase, is regulated by USP44. We showed that EZH2 is a novel target of USP44 and that the protein stability of EZH2 is upregulated by USP44-mediated deubiquitination. In USP44 knockdown prostate cancer cells, the EZH2 protein level and its gene silencing activity were decreased. Furthermore, USP44 knockdown inhibited the tumorigenic characteristics and cancer stem cell-like behaviors of prostate cancer cells. Inhibition of tumorigenesis caused by USP44 knockdown was recovered by ectopic introduction of EZH2. Additionally, USP44 regulates the protein stability of oncogenic EZH2 mutants. Taken together, our results suggest that USP44 promotes the tumorigenesis of prostate cancer cells partly by stabilizing EZH2 and that USP44 is a viable therapeutic target for treating EZH2-dependent cancers.

A New Class of Sol-Gel Transition Hydrogels for Macromolecular Delivery

  • Lee, Yu-Han;Park, Sung-Young;Chung, Hyun-Jung;Park, Tae-Gwan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.52-53
    • /
    • 2006
  • A new series of PEO-PPO-PEO and PPO-PEO-PPO copolymers having several hydroxyl groups on the PPO chain segment were synthesized, further modified with various poly(lactic acid) PLA oligomeric chains to confer physical stability after thermo-gelation in the body fluid. Gel stability was endowed by either increasing hydrophobic interaction between PLA chains or inducing stereocomplex formation between enatiomeric isomers of PLA chains. Macromolecular drugs were incorporated within the gels and their release patterns were investigated using Pluronic F127 as a control.

  • PDF

Effects of Godulbaegi Extracts on the Stability and Fluidity of Phospholipid Liposomal Membranes (고들빼기 추출물이 인지질막 Liposome의 안정성 및 유동성에 미치는 영향)

  • 배송자;노승배;정복미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.3
    • /
    • pp.508-517
    • /
    • 1998
  • We investigated the effects of godulbaegi extracts on the physiochemical properties of biological membranes as membrane stability and fluidity employing the phospholipid liposomal membrances as a biomembrane-mimetic system. The addition of the godulbaegi extracts to the phospholipid exterted great effects stagbilized the barrier function of the liposomal membranes in proportion to the concentration of the additive and significantly increased the membranes fluidity. The values of the fluorescence polarization of 1,6-diphenyl 1,3,5-hexatriene (DPH) decreased gradually as the temperature increased, and decreased abruptly near the phase transition temperature (Tm) of the liposome from gel to liquid crystalline state as usual. These results suggest that the activities of the godulbaegi extracts to enhance the stability and fluidity of the liposomal membranes have implication in their biological activities.

  • PDF

Effect of Ionic Stress on the Stability of Bacterial Spores (세균 포자의 안정성에 미치는 이온 강도의 영향)

  • Rhee, Chong-Ouk
    • Applied Biological Chemistry
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 1976
  • High ionic strength is expected to enhance dissociation of Ca-DPA from spores and to contribute to a detrimental effect on spore stability or on spore heat resistance with a combined treatment of gamma-radiation. From this study, this hypothesis has become apparent as as follows; 1) Ca-DPA dissociation contributes to loss of stability of bacterial spores with respect to heat resistance, survival during storage, and 2) the cytoplasmic membrane plays a role in maintaining the stability of DPA-Ca-spore complex, apparently by serving as a permeability barrier.

  • PDF