• Title/Summary/Keyword: biological resistance

Search Result 816, Processing Time 0.03 seconds

Entomopathogenic Fungi-mediated Pest Management and R&D Strategy (곤충병원성 진균을 활용한 해충 관리와 개발 전략)

  • Lee, Se Jin;Shin, Tae Young;Kim, Jong-Cheol;Kim, Jae Su
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.197-210
    • /
    • 2022
  • Entomopathogenic fungi can be used to control a variety of sucking and chewing insects, with little effect on beneficial insects and natural enemies. Approximately 170 entomopathogenic fungal insecticides have been registered and used worldwide, with the recent focus being on the mode of action and mechanism of insect-fungal interactions. During the initial period of research and development, the industrialization of entomopathogenic fungi focused on the selection of strains with high virulence. However, improvement in productivity, including securing resistance to environmental stressors, is a major issue that needs to be solved. Although conidia are the primary application propagules, efforts are being made to overcome the limitations of blastospores to improve the economic feasibility of the production procedure. Fungal transformation is also being conducted to enhance insecticidal activity, and molecular biology is being used to investigate functions of various genes. In the fungi-based pest management market, global companies are setting up cooperative platforms with specialized biological companies in the form of M&As or partnerships with the aim of implementing a tank-mix strategy by combining chemical pesticides and entomopathogenic fungi. In this regard, understanding insect ecology in the field helps in providing more effective fungal applications in pest management, which can be used complementary to chemicals. In the future, when fungal applications are combined with digital farming technology, above-ground applications to control leaf-dwelling pests will be more effective. Therefore, for practical industrialization, it is necessary to secure clear research data on intellectual property rights.

The Application of Genome Research to Development of Aquaculture (양식산업에 발전을 위한 유전체 분석 기술 적용)

  • Lee, Seung Jae;Kim, Jinmu;Choi, Eunkyung;Jo, Euna;Cho, Minjoo;Park, Hyun
    • Journal of Marine Life Science
    • /
    • v.6 no.2
    • /
    • pp.47-57
    • /
    • 2021
  • In the fishery industry, global aquaculture production has stagnated due to overfishing of aquatic products, restrictions between countries, and climate change. The aquaculture suggests the possibility of a blue revolution that can be expanded in a new way. The aquaculture industry now accounts for more than half of the fishery products from the sea as a raw material for seafood for human consumption. Various latest biological research methods are being applied for the development of a sustainable aquaculture industry. Genomics has made significant progress in recent years. Since the genome sequence of Atlantic cod was sequenced in 2011, the genomes of more species have been sequenced. The genome information is providing a more robust and productive knowledge base for the aquaculture industry, including breeding and breeding of superior traits, improving disease resistance quality, and optimizing aquaculture feed and feed methods. This review looked at the status of genome analysis technology and the current status of genome research of aquaculture species. The development of genome research technology and massive genomic information is important in solving the challenges of the aquaculture industry and will help sustainable fisheries and aquaculture.

Anti-Helicobacter pylori Activity of Lactobacillus spp. Isolated from Gajami Sikhae (가자미식해에서 분리한 Lactobacillus spp.의 항헬리코박터 활성 평가)

  • Eun-Yeong Bae;Gi-Un Cho;Sung-Keun Jung;Young-Je Cho;Byung-Oh Kim
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.260-267
    • /
    • 2023
  • Helicobacter pylori infects the mucosa, induces chronic inflammation and ulcers, and is known as a biological carcinogen. Antibiotics are used as therapeutic agents for H. pylori, but there are problems such as resistance. Thus, research is being conducted on the use of lactic acid bacteria (LAB) as an alternative therapeutic agent. There have been many studies on LAB related to kimchi. However, studies related to Gajami Sikhae, a traditional fermented seafood in Korea, are insufficient. In this study, we investigated the inhibitory effect of LAB isolated from Gajami Sikhae on H. pylori and its use as a probiotic. Forty species of LAB isolated from Gajami Sikhae were identified as Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc mesenteroides, and Weisella paramesenteroides, and 10 strains of 40 species were selected through liquid inhibition assay of H. pylori. The selected LAB supernatant at 1%, 5%, and 10% had a growth inhibitory effect on H. pylori 52, 51, e-53, and 309. The adjusted pH of 7.0 was used for the LAB culture supernatant, in reference to a study that the growth of H. pylori is affected by acid. All 10 strains of LAB at 5% and 10% concentration suppressed the growth of H. pylori 52, and 7 strains of LAB at 10% concentration suppressed the growth of H. pylori e-53. LAB also had the effect of suppressing the activity of urease. Finally, LAB isolated from Gajami Sikhae is expected to be useful for eradicating and preventing H. pylori.

3-Deoxysappanchalcone Inhibits Cell Growth of Gefitinib-Resistant Lung Cancer Cells by Simultaneous Targeting of EGFR and MET Kinases

  • Jin-Young Lee;Seung-On Lee;Ah-Won Kwak;Seon-Bin Chae;Seung-Sik Cho;Goo Yoon;Ki-Taek Kim;Yung Hyun Choi;Mee-Hyun Lee;Sang Hoon Joo;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.446-455
    • /
    • 2023
  • The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anti-cancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.

In-silico annotation of the chemical composition of Tibetan tea and its mechanism on antioxidant and lipid-lowering in mice

  • Ning Wang ;Linman Li ;Puyu Zhang;Muhammad Aamer Mehmood ;Chaohua Lan;Tian Gan ;Zaixin Li ;Zhi Zhang ;Kewei Xu ;Shan Mo ;Gang Xia ;Tao Wu ;Hui Zhu
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.682-697
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Tibetan tea is a kind of dark tea, due to the inherent complexity of natural products, the chemical composition and beneficial effects of Tibetan tea are not fully understood. The objective of this study was to unravel the composition of Tibetan tea using knowledge-guided multilayer network (KGMN) techniques and explore its potential antioxidant and hypolipidemic mechanisms in mice. MATERIALS/METHODS: The C57BL/6J mice were continuously gavaged with Tibetan tea extract (T group), green tea extract (G group) and ddH2O (H group) for 15 days. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in mice was detected. Transcriptome sequencing technology was used to investigate the molecular mechanisms underlying the antioxidant and lipid-lowering effects of Tibetan tea in mice. Furthermore, the expression levels of liver antioxidant and lipid metabolism related genes in various groups were detected by the real-time quantitative polymerase chain reaction (qPCR) method. RESULTS: The results showed that a total of 42 flavonoids are provisionally annotated in Tibetan tea using KGMN strategies. Tibetan tea significantly reduced body weight gain and increased T-AOC and SOD activities in mice compared with the H group. Based on the results of transcriptome and qPCR, it was confirmed that Tibetan tea could play a key role in antioxidant and lipid lowering by regulating oxidative stress and lipid metabolism related pathways such as insulin resistance, P53 signaling pathway, insulin signaling pathway, fatty acid elongation and fatty acid metabolism. CONCLUSIONS: This study was the first to use computational tools to deeply explore the composition of Tibetan tea and revealed its potential antioxidant and hypolipidemic mechanisms, and it provides new insights into the composition and bioactivity of Tibetan tea.

Biocontrol Activities of Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3 and Pseudomonas sp. BC42 on Anthracnose, Bacterial Fruit Blotch and Fusarium Wilt of Cucumber Plants (Peribacillus butanolivorans KJ40, Bacillus zanthoxyli HS1, B. siamensis H30-3와 Pseudomonas sp. BC42에 의한 오이 탄저병, 박과류 과실썩음병과 오이 덩굴쪼김병의 생물방제 효과검정)

  • Jiwon Kim;Mee Kyung Sang
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.188-192
    • /
    • 2023
  • Abiotic and biotic stresses have been a serious threat to crop growth and productivity in the agricultural system. In this study, four strains (HS1, H30-3, KJ40, and BC42), which have biological activities related to disease suppression or alleviation of salinity and drought stresses, were tested for broad-spectrum biocontrol activity against anthracnose caused by Colletotrichum orbiculare, a bacterial fruit blotch caused by Acidovorax citrulli, and Fusarium wilt caused by Fusarium oxysporum in cucumber plants. As a result of test, when the four strains were drenched into the soil, anthracnose in cucumber leaves significantly decrease; strain KJ40 suppressed disease incidence by A. citrulli; strain BC42 significantly reduced bacterial fruit blotch and Fusarium wilt compared to control. Therefore, strain KJ40 could be a biocontrol candidate for controlling anthracnose through induced systemic resistance and the disease caused by A. citrulli as well as alleviating drought stress; strain BC42 has broad-spectrum biocontrol activity against anthracnose, Fusarium wilt, and bacterial fruit blotch.

Present and Prospect of Plant Genomics in Japan (일본의 식물유전체 연구현황 및 전망)

  • Yoon, Ung-Han;Lee, Jeonghwa;Lee, Gang-Seob;Kim, Young-Mi;Ji, Hyeon-So;Kim, Tae-Ho
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.560-569
    • /
    • 2011
  • In Japan, plant genomics research is mainly leaded by the national research institutes. The various structural studies such as rice genome has allowed researchers to analyze useful traits, and to focus their commercialization. With aims to facilitate structural and functional study in plant genome, NIAS (National Institute of Agrobiological Sciences) constructed Poaceae genome DB and RIKEN (Rikagaku Kenkyusho) built DB for Arabidopsis genome and plant full-length cDNA. NIG (National Institute of Genetics) constructed a national biological resources DB (National Bio Resource Project). This compiling DB provides a variety of genome-related research materials for researchers in the field. Recently, as an effort to resolve global issues of food supply and environmental problems, New Agri-genome Project has been performed aiming to develop an innovative agricultural technologies for the quantity, disease resistance and identifying useful genes related to environmental problems. In addition, in order to improve agricultural productivity in developing countries, JIRCAS assisted technical supports for the plant genome research and developed NERICA rice, which is suitable for African area. Such these approaches are expected to contribute to solving the global issues about food, energy and environment in the world.

Licochalcone C Inhibits the Growth of Human Colorectal Cancer HCT116 Cells Resistant to Oxaliplatin

  • Seung-On Lee;Sang Hoon Joo;Jin-Young Lee;Ah-Won Kwak;Ki-Taek Kim;Seung-Sik Cho;Goo Yoon;Yung Hyun Choi;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.104-114
    • /
    • 2024
  • Licochalcone C (LCC; PubChem CID:9840805), a chalcone compound originating from the root of Glycyrrhiza inflata, has shown anticancer activity against skin cancer, esophageal squamous cell carcinoma, and oral squamous cell carcinoma. However, the therapeutic potential of LCC in treating colorectal cancer (CRC) and its underlying molecular mechanisms remain unclear. Chemotherapy for CRC is challenging because of the development of drug resistance. In this study, we examined the antiproliferative activity of LCC in human colorectal carcinoma HCT116 cells, oxaliplatin (Ox) sensitive and Ox-resistant HCT116 cells (HCT116-OxR). LCC significantly and selectively inhibited the growth of HCT116 and HCT116-OxR cells. An in vitro kinase assay showed that LCC inhibited the kinase activities of EGFR and AKT. Molecular docking simulations using AutoDock Vina indicated that LCC could be in ATP-binding pockets. Decreased phosphorylation of EGFR and AKT was observed in the LCC-treated cells. In addition, LCC induced cell cycle arrest by modulating the expression of cell cycle regulators p21, p27, cyclin B1, and cdc2. LCC treatment induced ROS generation in CRC cells, and the ROS induction was accompanied by the phosphorylation of JNK and p38 kinases. Moreover, LCC dysregulated mitochondrial membrane potential (MMP), and the disruption of MMP resulted in the release of cytochrome c into the cytoplasm and activation of caspases to execute apoptosis. Overall, LCC showed anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, inducing ROS generation and disrupting MMP. Thus, LCC may be potential therapeutic agents for the treatment of Ox-resistant CRC cells.

Inhibitory Effect of Steviol and Its Derivatives on Cell Migration via Regulation of Tight Junction-related Protein Claudin 8 (스테비올 및 그 유도체의 세포연접 관련 클라우딘 8 발현 조절을 통한 세포이동 저해효과)

  • Choi, Sun Kyung;Cho, Nam Joon;Cho, Uk Min;Shim, Joong Hyun;Kim, Kee K.;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.4
    • /
    • pp.403-412
    • /
    • 2016
  • The tight junction, one of Intercellular junctions, performs a variety of biological functions by bonding adjacent cells, including the barrier function to control the movement of the electrolyte and water. Recent studies have revealed that unusual expression of tight junction-related genes have been shown to be related in cancer development and progression. Recently, there are many reports that control of tight junction proteins expression is closely related to the skin moisture. In this study, we are focusing on the regulating mechanism of tight junction-associated genes by the steviol and its derivatives. Steviol, used as a sweetner, is known to chemical compound isolated from stevia plant. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assay was carried out in HaCaT cells (human keratinocyte cell line) in order to determine the cytotoxicity. As a result, while steviol showing cytotoxicity from $250{\mu}M$, steviol derivatives are not cytotoxic more than $250{\mu}M$ concentration. We have observed a change in the tight junction protein via quantitative real-time PCR. Claudin 8 among tight junction proteins is only significantly reduced up to 30% in the presence of steviol. In addition, cell migration was inhibited by steviol, not by stevioside and rebaudioside. Finally, we could observe that steviol, not stevioside and rebaudioside, is able to increase the skin barrier permeability through the transepithelial electric resistance (TEER) measurements. These results suggest that the steviol and its derivatives are specifically acts on the tight junction related gene expression, but steviol derivatives are more suitable as a cosmetic material.

The Effects of Nitric Oxide Inhibitor on Hyperdynamic Circulation in Portal Hypertensive Rats (산화 질소 억제제가 문맥 고혈압 쥐의 혈역학 변화에 미치는 영향)

  • Kim, Pill-Young;Jang, Byeong-Ik;Kim, Tae-Nyeun;Chung, Moon-Kwan
    • Journal of Yeungnam Medical Science
    • /
    • v.16 no.2
    • /
    • pp.181-192
    • /
    • 1999
  • Background: Nitric oxide, a vasodilator synthesized from L-arginine by vascular endothelial cells, accounts for the biological activity of endothelium derived relaxing factor. Previous studies demonstrated that nitric oxide inhibitor, $N^{\omega}$-Nitro-L-Arginine(NNA) diminished the hyperdynamic splanchnic and systemic circulation in portal hypertensive rats The present study was done to determine the role of nitric oxide in the development of hyperdynamic circulations in the prehepatic portal hypertensive rat model produced by partial portal vein ligation. Methods: The portal hypertensive rats were divided into water ingestion group and NNA ingestion group. After partial portal vein ligation, NNA ingestion group and water ingestion group received NNA 1mg/kg/day and plain water through the mouth for 14 days, respectively. Cardiac output, mean arterial pressure, organ blood flow and porto-systemic shunting were measured by radioisotope labeled microsphere methods. Vascular resistances were calculated by standard equation. Results: There were significant decreases in mean arterial pressure, increases in cardiac output and cardiac index, and decreases in total systemic and splanchnic vascular resistance in portal hypertensive rats compared to normal control group (p<0.01). Compared to the water ingestion group, significantly increased mean arterial pressure with decreased cardiac output and cardiac index were developed in the NNA ingestion group. Total systemic and splanchnic vascular resistance were significantly increased in the NNA ingestion group compared to water ingestion group (p<0.05). But, there was no significant difference in portal pressure between the two groups. Conclusion: The hemodynamic results of this study indicate that hyperdynamic circulation in prehepatic portal hypertensive rat mode1 was attenuated by ingestion of NNA. Nitric oxide may play an important role in the development of hyperdynamic circulation with splanchnic vasodilation in chronic portal hypertension.

  • PDF